WWW.DISSERS.RU


...
    !

Pages:     | 1 || 3 |

e ooo-yaap cy C.., .A.yoa Moe eo p pee ycox eopeeeoc L1={b} a21 a22 a2m 2 ai1 ai2 aim i ak1 ak 2 ...

-- [ 2 ] --

Tpoyapa ooc Be Cooc a ya 1 peae opoe, e pya e xoeoc yae 2 ocycye op- co opoo oaa aoc . ya 3 peae co opoo e coce o e aa ya B cooec c pepa oea epaa aa a oo pep coocaec c aoo (oeceo) ao, p o caa coa oea pep ycoo paec a ey, ceya a e oeaec a 2 .. Hapep, o pep co oc aoa aa oe pecaea e:

1 2 peea cooc opoe, e xoeoc co opoo e cxo x ax, a yo cpa eop a1 = (1, 2, 3), a2 = (2, 3, 1), a3 = (1, 3, 2), oope cooecy 1, 2, 3.

1. Coppye cco eopx oeo y epo oopo cya L1. Oope cya o eope oe, ee oo ye xye ae o ce pep (cooeceo epa opa oopa cya). Cco eopx oeo y oopx cya oo eco eopx oeo, ex o ce pep, poe ooo, e e }.

ae, o y ao oopo cya. L1 = {211, 311, 121, 131, 112, 2. Cpa oyee eope oe epo oopo cya ey coo. oo coca apy apx cpae Anxn=// //, ij e n oeco eopo oopo cya, = ( xi,x ) cee ij j peoe xi oe epe xj. Ec =1, o ee xi peo ij eee eea xj, =2 xi paoee xj, = 3 xj peoe ij ij ee xi, p = 0 ee cpoe coe e cpae.

ij B cxoo ape eoopx eax ye ec e, o caee a a ocoe aoo a (a. 3.3). aee ae p eea a e apa, o oce oo, a o yaao, o oea (211) ye, e (121). ae, o cpaee (211) c (131) ceao a ocoe paoc ((211) ye (121), a (121) ye, e (131) cxoo ape). ooc aoea cepa apa peea a e pee.

Taa 3. 211 311 121 131 112 113 211 311 121 131 112 211 2 1 0 0 0 0 211 2 1 1 1 0 311 2 0 0 0 0 311 2 0 0 0 121 2 1 0 0 121 2 1 0 131 2 0 0 131 2 0 112 2 1 112 2 113 2 113 211 311 121 131 112 113 211 311 121 131 112 211 2 1 1 1 1 1 211 2 1 1 1 1 311 2 1 1 3 1 311 3 2 1 1 3 121 2 1 1 1 121 3 3 2 1 1 131 2 3 1 131 3 3 3 2 3 112 2 1 112 3 1 3 1 2 113 2 113 3 3 3 3 3 o e caoc oo occao ce ae eeo (a. 3.3, eepa apa).

3. B cooec c ocee ape a. 3.3. yopo e ope oe cca L1: (211), (311), (121), (112), (131), (113). Ec o eoop eopa ec pae oe, o y, paey peee, aac ooee opoc cpae copx oe o oopo cya.

4. coy ey opoy ay (E) (211), (311), (121), (112), (131), (113), yopo 1, 2, 3 o ceyey py: ep oe aee o oy pep ee pa 1, opoe aee o ep oy pep (211) pa 2 ..

Tpoy- Beopa Beopa oe Be- Co- ooc apa oea o a o opaca oc ya a E pao 1 1 2 3 147 2 2 3 1 261 3 1 3 2 165 5. Ha ocoe a ceae o: eopa oea, oca a 2, ye, e oe 1 3, aee oo peoo, o ye 3. M yopo e 2, 1, 3 opee, o ao ee peoe x ec 2. B oe poeyp cepa eoxoo peoca cooecye oce.

Ta opao, eo APOC ooe papoa aepa o cye epa oea c yeo aoc pepe, o ocoeo ao oopepax aa. poe peoeoo eoa, ooo peee pyx, cooecyx aoy accy aa [64]: AP (APa oeca), OPACC (OPaa ACCa).

4. Cpaeoe cceoae eoo p pee ycox eopeeeoc Moe p pee poo coyc opaoo ypax cceax, eeyax cceax opao opa , cceax cycceoo eea. B paoax [8, 25, 42, 45, 63, 100] pooc acca pax oee eoo p pee , oee x oco, aeac oxo eopeecoo cpae, o aa oee eoo c o pe paecx peyao, a pao, e paccapaec. Bae 4 poee cpaee paecx peyao aaa poex cya a ocoe oe y o pyeoc (eoa P p eeo cxoo opa) oe epa-pya-ypoa (eoo aaa epapx), oe eoo yo poa a ocoe eopx oeo aepa (aece e oa p pee) c e e aoee oax ex oxoo aoo eoo aoy aay.

B paee 4.1 paccapac ocoe eopeece coca o eo eex oee. coy ae coca, pooc cee popeo oeo, apoe cpaee oopx ocyecec a ocoe oeceo a o paa oppoa ooe MA, eoo p pee a ae eeo o, aoopo.

Paccapaec opoc occaoe ooe o eopy pop eo aepa. Taa oooc peaoaa eopa eo pyex aepa, o oopoy, a oaao, oo occao opa ocepy apy MA. Boccaoee e eeoo ooe ecpooo peoe o eopy popeo MA c ooc o o coo ocyec eooo.

a eco, p ocyece oaoo opa aae eo xoo aop, oaae e a xo cceyeoo po ecca eo peya. Heoope aop p o oac opa oaoy pecae (.e. oy pae oeceo), a eoope e, oy pae oo p oo cyex oeo cepo. By oo ao xapaepco eoo p pee ec x oooc ya oey cocay oopepao poe, paey e oecex xapa epc. B paee 4.2 oecee ae e poecc p pee c e poep ocoepoc eoo yopo a aepa a ocoe pax oee p pee.

a oeaec [91], o ayx apae pa MA ec oea eoa coceoo eopa py eoo ocpoe o aao ape apx cpae oeo oaoo eoo x yopoa. B paee 4.3 a o poeeo cceoae, e oopoo aaac opeee aoee peoex eoo p pee ycox eopeeeoc. Cpaee poooc yaca poecca p pee o o pep, peoe a ocoe peyao paecoo pee eoo eopee coo ye x oco. B aece cpeca aaa pa MA.

4.1. Cpaee peyao papoa aepa pa eoa p pee ycox eopeeeoc Moe p pee ycox eopeeeoc pec opa aoee oax aepa exc cyax, xapaepyex eooc, eooo opa. Ocyecee papoa aepa o cyae ooo poo pa p eoa. P ao, o peya pee e oo peoca oaooe papoae aepa. Boo pa e pope aepa, opeeee pa eoa, o yo poae x oo oao. poee cpaee peyao papoa aepa MA eoo p pee p eeo cxoo opa.

yc eec oeco X = {x1, x2,..., xn} aepa, XxX apoe ooee a oece aepa. Tpeyec ao aep a opee ee oey (,,..., ). B MA ( xoe aeeo 1 2 n oe (1)) (,,..., ) eop popeo, eoax p 1 2 n pee p eeo cxoo opa (coco (2)) (,,..., ) 1 2 n eop ceee eopyeoc aepa. pe, (1) 0 < 1, i (2) 0 1.

i apoe ooee peoe aepa (1), (2) aaec e apao ap Anxn= // //, e = ( xi,x ) cee pe ij ij j oe xi aepa epe xj. Map Anxn= // //, coppoae ij ao cocoe cooec co aa (ao y pae oc (2) ao ooceo aoc (1)) paa oppoa ooe ao eoo, yy oaa po ox yax coc.

B cocoe (2) Anxn pecae coo eeoe ooee ecpooo peoe aepa: XxX [0;

1], .e. = ( xi,x ) [0;

1] ae ij j y paeoc .o.. Map // // eopae, ..

ij 0 1. = 1, e i = j, .e. .o.. peeco.

ij ij aoa aa cocoa (2) pecaea a pc. 4.1. y pa eoc ( xi,x ) oaae cey coca:

j - ( xi,x ) opacae c opacae cee peocxoca (c, e j coc) oe peocxoca aepa;

- ( xi,x ) = 1 oaae eycooe peocxoco aepa xi a xj;

j - ( xi,x ) = 0 oaae o ooe ocyce peocxoca aepa j xi a xj, o o, o i-ma aepaa xye j-mo.

0, 0 0,1 0,3 0,4 0,5 0,7 0,8 0,9 0, oe co cyeceo ecoo peoeee peoeee peoeee Pc. 4.1. aoa aa eoa P p eeo cxoo opa B cocoe (1) Anxn pecae coo ooey opaoce py apy, oopy oo ca ooee peoe a epa. XxX [1/9;

9], .e. = ( xi,x ) [1/9;

9] ae y ij j paeoc ooe peoe aepa, p o ( xi,x ) j pae ae cooec c aoo ao ooceo ao c, pecaeo a pc. 4.2.

B (1) // // c:

ij - ooe;

- opaocep (ec = a, o = 1/a);

ij ji - epo;

- p;

- a e, a (2), ape ooe (1) c peec, .. = 1, e i = j.

ij 1/8 1/5 1/ 1/9 1/7 1/6 1/4 1/2 3 2 4 5 7 opao xye cyeceo eee ecoo eee paa ecoo peo- cyeceo pe- oe co peoeee peoeee aoc eee oeee peoeee Pc. 4.2. aoa aa MA y paeoc (x, x ) oaae cey coca:

i j - (x, x ) opacae c opacae aeoc oe peocxoca a i j epa;

- (x, x ) = 1 oaae pay aoc aepa.

i j Cpaee peyao papoa aepa oo poec eco cocoa.

1). Coomeceue oeox a. o cpa peya papo a aepa X = {x1, x2,, xn}, oyee peyae pee eoo (1) (2), eoxoo aae coppoa cooecye cocoa .o.. (2) apy apx cpae (1) cooec c x ao aa. Oeo, o cep e coe ao oo o e py aepa e ap, cooecye coco a (1) (2), coacoae ey coo, a, o ee ap yoeop epece e coca. Ta opao, poeype cpae peyao (1) (2) oa peecoa poeypa cooece a (1) (2). poeypa cooece a oo o aoy e cy pep a (1) oy ec pep a (2). cooece a paccapaex eoo eoxoo opee ee a a ooope aepaece cpyyp, o ye ceao ae 5.

2). pueeue aopumo (1) u (2) copupoa uap om oeu oux u mex e amepamu a ocoe aox a ax emoo. P oppye ooe a oece ox ex e aep a eoa (1), eoa (2), cyeo (eec y, o o e ca e ooe cooecee oeo eoo). ae aoy o oe peec aop (1) (2).

Paccop oooc pee MA .o.. (2), .e. oo oc pe .o.. eopey eppoa-poeyca: po Ak e ap A lim = cw, Ak = eT Ak e, e c ocoa, a w coce k Ak eop, cooecy =.

max Map .o.. Anxn= // // (2) c eopae ( 0), ij ij a ap apx cpae MA (1). Ec a ooe ao ij ooeoe ycoe 0 (c o pe cpae aepa ij o oaae, o aepa e oy epa o ooe py pyy), , ae, opeoa oepaoc .o.. (eeoe oo ee oepao, ec oo peeco cepo), o ap R aeoo yoeop yco eope eppoa-poeyca c p. Bo cyae ooa opaoa ap eeoo o oe ecpooo peoe e oo eoo (2), o a ocoe eope eppoa-poeyca (eoo (1)). Oao, ae ca poco pep yeae ac pax peyaax peex eoo. Ha pep, a ocoe ap .o..

1 0,2 0, 0,3 1 0, 0,4 0,6 nd c cooae eoa (2) oy eop = (0,9;

0,9;

0,7), oa a R pe eopey eppoa w = (0,268;

0,373;

0,358).

nd poep o o ecoae w oe cyae a ope R cyax .o.. p oo ceoo cepea. oo ap cex paepoce o 9 coa o 50 opo (aa opa coco 400 ap) ao cya opao x ee c a a (0;

1] a, o = 1 p i = j. pe aoy oy ij ex ooe aop (2) (1) ocae oeco ooe ao paepoc, oopx eop popeo y eo pyeoc peoca oaooe papoae aepa (a. 4.1).

peeo a o, o c yeee paepoc ap oeco cyae oaooo yopoa aepa aeo yeaec.

Taa 4. Peya cooec yopoa aepa eoa (1) (2) o .o..

Paepoc Cpe % oaooo yop ap oa o ce opa A3x3 51, A4x4 20, A5x5 6, A6x6 1, A7x7 0, A8x8 0, A9x9 0, Paccop oooc pee eoa p pee p eeo cxoo opa c o cepo opaocep apa eoa (1).

Mapy Anxn= // //, [1/9;

9] (1) oe peca e .o..

ij ij (2). oo o ooe Anxn= // // epee ooe Bnxn= // //, ij ij e = / max. Ta opao, oyae eeoe ooee ij ij ij i, j XxX [0,1].

mepeue. eee aoo eea ap (1) a aca ee (yoee a oe ooeoe co oe e) e ee ee eopa popea (aoo coceoo eopa). ec eo, o eopee eppoa-poeyca po ap A Ak e lim = cw, Ak = eT Ak e, e c - ocoa, a w coce eop, k Ak cooecy (A). oyae max Bke ( mA )k e mk Ak e mk Ake Ake lim = lim = lim = lim = lim = cw, k k Bk ( mA )k k mk Ak k mk Ak k Ak e m = max.

ij i, j Oca ceye, o ooo aopa ae eopa popeo aepa (1) cyecye ecoeo oo ooe Anxn, oa xc py o pya a ocoy.

Aaooe yepee oo copypoa .o..

mepeue. oee ooe (2) a c = const, c > 0, e ee eo eop ceee eopyeoc aepa.

eceo, yc eec ooee R. Paccop ooee R : XxX [0,m], e = m.

R R R p ocpoe eeoo ooe cpooo peoe Rs o .o.. R j j j j ( xi,x ) - ( x,xi ), ecu ( xi,x ) > ( x, xi );

S ( xi,x ) = R j 0, ecu ( xi,x j ) ( x j,xi ).

p ocpoe eeoo ooe cpooo peoe RS o .o.. R j j j j ( xi, x ) - ( x, xi ), ecu ( xi, x ) > ( x, xi );

S ( xi, x ) = R j 0, ecu ( xi, x j ) ( x j, xi ).

Ec ( xi,xj ) > ( ) ( x,xi ), o m ( xi,xj ) > ( )m ( xj,xi ), .e., ec j ( xi,xj ) RS, o ( xi,xj ) RS.

Bop ao aope (2) oppyec oeco eo nd s pyex aepa ( xi) = 1 max { (xi, xj)}. RS coppye eo R R j nd S nd cey opao: (xi) = m max { (xi, xj)}. opeee R R R j ceye, o ooe, ye poeeo oaooe R R nd papoae aepa. poe oo, ec (xi) opayec (o R eoe (2) pe e peyec), o , eop ce R R ee eopyeoc aepa yy coaa.

Oca ceye, o cpoaoy opaoaoy eopy nd (xi), i = 1,,n (2) cooecye ecoeo oo .o.. : XxX, R R c ooc o ocoo. o aoy yepe, pe aop (2) opaocepo ape Anxn= // //, epexo ooe ij Bnxn= // //, e = / max, pe eoaee.

ij ij ij ij i, j Ho peee eoa (2) apa (1) e po peyay, o op oyaec MA.

Hapep, opaocepo ap 1 1/3 1/ 3 1 6 1/6 o eopee eppoa-poeyca ye coppoa eop popeo (0,095;

0,654;

0,249).

Ec pe ao ape coco (2), o ye oye eop ceee eopyeoc aepa (0,045;

0,909;

0,045), oop pecae papoae aepa, ooe o eoa (1).

Aaoo, a epo cyae, poep o o ecoae w nd a ope cyax opaocepx ap p oo R ceoo cepea. oo ap cex paepoce o 9 coa o 50 opo (aa opa coco 400 ap) ao cya opao x ee ca a MA a, o = 1, npu i = j = 1 /. pe aoy oyex oo ij ij ji e aop (2) (1) ocae oeco ooe ao pa epoc, oopx eop popeo y eopyeoc peoca oaooe papoae aepa (a. 4.2). pe eo a o, o c yeee paepoc ap oeco cyae oaooo yopoa aepa aeo yeaec.

Taa 4. Peya cooec yopoa aepa eoa (1) (2) o opaocepo ape Paepoc Cpe % oaooo yopo ap a o ce opa A3x3 61, A4x4 29, A5x5 8, A6x6 2, A7x7 0, A8x8 0, A9x9 0, To ec, ooe cpae aepa p aoe eoopx ooex opae yoeop coca, eoxo pee pyoo eoa, o o pee x eoo oaa ecocoeoc aoo oxoa (pc. 4.3).

61, 51, .o..

29, ap MA 20, 8, 10 6, 2, 1, 0,36 0,2 0,07 0,06 0,01 A3x3 A4x4 A5x5 A6x6 A7x7 A8x8 A9x paepoc ap Pc. 4.3. acoc oaox yopoa aepa pa eoa o paepoce ap Ha ocoe poeex paccye oo copypoa cey e coca paccopex oee eoo yopoa:

Cocmo 1. oee apoo ooe A a ooey ocoy e ee eoo yopoa oe.

Cocmo 2. Papoae aepa a ocoe apx ooe oo oe eoa pyx oee oe cyae pao, pe c yeee paepoc ap cee paoo papoa o pacae.

Cocmo 3. Moe eoo yopoa oyca cee eopa popeo o pa ap peec ooe p aoe a x pa ooex yco.

3). Boccmaoeue omoeu (1) a ocoe emopa cmenee eo uupyeocmu amepamu, uceoo omoeu (2). Paccop .o.. : XxX [0,1] a oece aepa X = {x1, x2,..., xn}. Meoo R nd (2) oy oeco eopyex aepa S = {

( xi ) >}, R nd e ( xi ) pecae coo ec, oey, ao aepa.

R p o aex paccye eoxoo, o ooc ycoe xi, i = 1,...,n | ( xi ) 0 ( poo cyae, p oye S opaocepo ap ye oc eee a y). ope % cooec ye, o ( xi ) = 1 (opaye oye eop). Cee p S i aeoc eeo ooe Anxn= // // (1) ye opee o ij cpeco apx cpae = ( xi ) / ( x ) ( y oo ycoe ij S S j ( xi ) = 1 oo ca o). B peyae oy p S i y opaocepy apy, oaay coco peeco c ( = 1, p i = j), oopa yoeope yco eope eppoa ij poeyca. Bc ao ap eop popeo ( w1,w2,...,wn ) yec o, o o coaae c opaoa e opo ceee eopyeoc aepa.

eceo, yc a eop ceee eopyeoc aep a a peya eoa (2) =( ( x1 ), ( x2 ),..., ( xn )), ao, o S S S S ( xi ) = 1.

S i Ooa epe ij co, cooecyee aoc aepa xi o cpae c xj. Mapy, cocoy x ce, ooa epe A = ( ). Bae cyae = ( xi ) / ( x ), i, j = 1,,n.

ij ij S S j ( x ) ooy = ( x ) / ( xi ) = 1/. Toa ij S j = 1, i, j = 1,...,n.

ji ij S j S ( xi ) S n Ceoaeo, ( x ) = n, i = 1,...,n.

ij S j j=1 ( xi ) S n oyae ( x ) = n ( xi ), i = 1,...,n. A = n. To ec, ij S j S S S j= coce eop ap A c coce aee n. Cpyo S copo, o eopee eppoa-poeyca ( eoe MA) o ape A ye ce eop popeo ( w1,w2,...,wn ), oop, a oaao, ye c eopo ceee eopyeoc aepa =( ( x1 ), ( x2 ),..., ( xn )).

S S S S Hapep, paee paccopeoo .o..

nd .o.. w = = R 1 0,2 0,5 0,9 (0,36) 0, 0,3 1 0,9 0,9 (0,36) 0, 0,4 0,6 1 0,7 (0,28) 0, nd cooecya a peyaa = apa MA ye e R :

a co. Beop eop pop. w 0,9/0,9 = 1 0,9/0,9 = 1 1,09 0, 0,9/0,7 1, 0,9/0,9 = 1 0,9/0,9 = 1 0,9/0,7 = 1,29 1,09 0, 0,7/0,7 = 1 0,85 0, 0,7/0, 9 0,78 0,7/0,9 0, Boccaoee o eopy popeo (1) .o.. (2) c ooc o ocoo eooo, a a ooy w oy cooecoa ecoo pax .o..

Ta opao, paee 4.1 oaao, o peee pooo y .o.. oe y opyeoc cocoa opao ax (1) peocae peya, oe o ex, oope oy oye a ocoe oe (2). Tao e o cea opaocep x ap (1).

B o cyae pecae epec opoc o o, a o eopy p opeo, oyeoy p oo ooo eoo, occao ap oe ooee, yoeopee yco pyoo eoa. Ha peo e coco occaoe ap (1) o eopy ceee eopye oc aepa (2).

4.2. peee eoo p pee aaa oecex ax cpae peyao pax eoo p pee c e e x ocoepoc oeoc eoxoo ocoo ac a x p aae oo o e poeo cya.

B aece ao aa ye paccapa aay papoa oeo a ocoe x ooe peoe, coppoaoo P. Ec p o cooa cyee oe cepo p apx cpaex oeo, o peya, ace o cxox ax aoo eoa, aeoo yy pa, a a ao eoe coyec co p apx cpae oeo oecea aa. ooy po aoo aa oe cya oo a aaa, cxo a oopo c ape cpae oeo, ocoae a x oec ex xapaepcax (a e a oeax cepo).

Tao oxo peaoa [91] cpa aeaoc MA peaoy eoy yopoa oeo.

B oopa paccapaec eoe yopoae oeo p oo pax oee p pee a ocoe oecex ax c e e oe eoa, peya oopoo aoee oo cooecy cxooy papoa oeo x oece xapaepca.

opoae oeo a ocoe ooe peoe o o oy pep yc ee oeco X = {x1,..., xn} oeo.

W = {w1, , wn} oecee oe oeo o pep q.

~ Heoxoo coppoa eee ooeca Ai, cooecy e paoy yopoa aoee peoex o pep q oeo pa eoa P.

B aece peax oeo x oecex xapaepc pac cop aecy cpeeooy ceecooc ocox o po y OAO Ȼ a 1998 . (a. 4.3). Ha ocoe oee p pee eoxoo o cyae ocyec papoae e o opaca aecx apa a x pooco.

Taa 4. Cpeeooa aeca ceecooc / poy a 1998 . o Ȼ Haae Cpeeo. a. ceeco. (. py.) Cop eeoeo Ceoe aepa epa oap eo oap Pacop oap Coca ooee peoe oeo A =, i, j = 1, , 5.

ij p o, ec wi acoa xapaepca (ec) i-o oea, o wi = paae cee peoe i-o oea epe j- (a. 4.4).

ij w j Ta cocaeoe ooee cooecye oe ocpoe ooe eoe aaa epapx (1) eoax p pee p ee o cxoo opa (2) yoeope ceeo apoe, p eeo a oe pa-pya-ypoa, a oe y o pyeoc. aecee eo p pee oo cpaa oe o eco pep;

cpaee oeo a ocoe x peoe ooceo ao-o oo e x eoax e p eec ( o cyae ye oye poce cya oe cop oo a), ooy a x ocoe eoe yopoae oeo o ooy pep e poooc.

Taa 4. Ooee peoe A =, cooecyee a. 4. ij epa poy C. e/ Ce. a. eo o. Pacop o.

o.

C. e/ 1 17489/4042 17489/1132 17489/4387 17489/ Ce. a. 4042/17489 1 4042/1132 4042/4387 4042/ epa 1132/17489 1132/4042 1 1132/4387 1132/ o.

eo o. 4387/17489 4387/4042 4387/1132 4387/4387 4387/ Pacop 1321/17489 1321/4042 1321/1132 1321/4387 o.

oyeoe ooee peoe ec ooeo opa ocepo ape, oopo oo pe o cocoo ce aoo coceoo eopa w. Bao pepe pe n c coco, a aoee ooe pee yi =, j = 1,...,n. Be ij op popeo oyae opaae aoo coceoo eopa.

Mapa A = ee eop popeo e :

ij 1,000 4,327 15,450 3,987 13,239 y1= 0, 0,231 1,000 3,571 0,921 3,060 y2= 0, 0,065 0,280 1,000 0,258 0,857 y3= 0, 0,251 1,085 3,875 1,000 3,321 y4= 0, 0,076 0,327 1,167 0,301 1,000 y5= 0, o cpa peya, oyee MA, peae eca o eo, poee opaa cxox oecex ax. Hop aoae oecee xapaepc oeo, a yeaec, coaa c eopo popeo:

oec. xa- Hopaoae o- ae eopa Oe paepca ec. xapapc popeo C. e/ 17489 0,616 0, Ce. a. 4042 0,142 0, epa o. 1132 0,040 0, eo o. 4387 0,155 0, Pacop o. 1321 0,047 0, oy pope oeo eoo P a ae eeo o.

cxooe apoe ooee ecpooo peoe ee :

1,000 4,327 15,450 3,987 13, 0,231 1,000 3,571 0,921 3, 0,065 0,280 1,000 0,258 0, R = 0,251 1,085 3,875 1,000 3, 0,076 0,327 1,167 0,301 1, Maca ee ooe max = 15,450 B aee o R aee ye cooao a ea (aoee aee) ooe.

apoe ooee cpooo peoe, accopoaoe c R, S R = R \ RT :

0,000 4,096 15,385 3,736 13, 0,000 0,000 3,291 0,000 2, RS= 0,000 0,000 0,000 0,000 0, 0,000 0,164 3,617 0,000 3, 0,000 0,000 0,310 0,000 0, Moeco eopyex aepa cpoc ao cyae o nd S pay ( ui ) = max - max{ ( u ;

ui )}.

R R j R u U j nd Hapep, ( u1 ) = 15,450 - 0 = 15,450.

R Boe oy eop ceee eopyeoc aepa nd = {15,450;

11,354;

0,065;

11,714;

2,286}.

R nd Hopaoae ae e coaa c eopo popeo, R oye opaae aoo coceoo eopa ap A, o peoca aoe e papoae aepa. Hecoaee ae ocec e, o MA opeee peyae cxo ec aoo oea, a eo (2) cee eopyeoc. eceo, ae ca ceecooc copoo eeoeoa e opyec a py nd e co cee eopyeoc ( u1 ) = 15,450, oopa R ceaec paae o, o oe oe opoac py, o nd co cee opoa e e, e max ( u1 ) = 0. ceox R R nd aepao ( u2 ) = 11,354, .e. cee opyeoc R nd nd ( u2 ) max ( u2 ) = 4, R R R (o apoy ooe ecpooo peoe o eo yec).

Cpa oyee pope (cee eopyeoc eoe (2) oo paccapa a pope oea, a a a ocoe eopa ceee eopyeoc eaec o o papoa oeo) (a. 4.5).

Taa 4. pope oeo, oyee pa eoa p pee ae eopa popeo, 0,378 0,278 0,002 0,287 0, oyex cocoo (2) ae eopa popeo, 0,616 0,142 0,040 0,155 0, oyex cocoo (1) oyee opaoae pope oeo aoo eoa ~ ~ oo paccapa a eee ooeca A1 A2 oeca X, cooecye eoa (1) (2) cooeceo, e ~ ~ nd A1 = { < x, y( x ) > }, x X, A2 = { < x, ( x ) > }, x X.

R Hopaoae oecee xapaepc oeo ye ~ eppepoa a eeoe ooeco A = { < x,w( x ) > }, x X.

B o cyae caoc oo opee cee paeca ~ ~ ~ eex ooec A1 A2 aooy oecy A. Cee pa eca opee pa cocoa.

Cee paeca yx eex ooec, paccapaea A.H.

Mexo [69], opeeec o opye ~ ~ ( A1, A ) = & ( y( x ) w( x )) = & (max( 1 - y( x ),w( x ));

max(1 - w( x ), y( x ))).

xX xX ~ ~ ( A1, A ) = ( 0,616 0,616 ) & ( 0,142 0,142 ) & & ( 0,040 0,040 ) & ( 0,155 0,155 ) & ( 0,047 0,047 ) = = 0,616 & 0,858 & 0,96 & 0,845 & 0,953 = 0,616.

~ ~ nd ( A2, A ) = & ( ( x ) w( x )).

R xX ~ ~ ( A2, A ) = ( 0,378 0,616 ) & ( 0,278 0,142 ) & & ( 0,002 0,040 ) & ( 0,287 0,155 ) & ( 0,056 0,047 ) = = 0,384 & 0,722 & 0,960 & 0,713 & 0,944 = 0,384.

~ ~ ~ ~ Ta a ( A1, A ) 0,5, o A A1 (cpaaee oeca eeo pa).

~ ~ Ta a ( A2, A ) 0,5, o cpaaee oeca eeo e pa ~ ~ ~ ~ ~ ~ A A2. Cee paeca ( A1, A ) > ( A2, A ), o ceecye o peoeoc peyao eoa (1), paccapaex a oec ee oe aoc oeo.

Xoo paccoe.

n ~ ~ R( A, A1 ) = w( xi ) - y( xi ), xi X.

n i= ~ ~ Bo cyae R( A, A1 ) = 0.

n ~ ~ 1 ~ ~ nd R( A, A2 ) = w( xi ) - ( xi ), xi X, R( A, A2 ) = 0,553 = 0,11.

R n i=1 Eoo paccoe n ~ ~ RE ( A, A1 ) = w( xi ) - y( xi ), xi X.

n i= ~ ~ p o RE( A, A1 ) = 0.

n ~ ~ 1 2 ~ ~ nd RE ( A, A2 ) = w( xi ) - ( xi ), xi X, RE ( A,A2 ) = 0,02.

R n i= Ta opao, pope, oyaee MA, paec coa a c ao ae oeo o paoy pep. Me o (2) ae e ae aoy, o eee peoee c o pe paeca cxo oece xapaepca.

B oe o paee 4.1., peya yx paccopex eoo oecex ax peoca a oaooe papoae a epa, a oc peyao cxo a. Taoe ocoep oe yopoae eoo (2) oecex ax pacxoee eo peyao c peyaa eoa (1) paee 4.1. oe oceo ecoacoaoc pooo pax ap. e coacoaee apa (1), e e yy peya eoo (1) (2) o ee opaoe.

Taoe yepee cppye cey ce cep e: cya opao oppyc 50 opo o 100 opaoce px ap A4x4 aa (ce ee ap cyae ca, coo ecye ae MA), pe aoe coceoe aee ao ap oaec o 4 (aoo coceoo ae ooc coa coao ap A ) a. C yeee poe oaooo yop 4x oa aepa pa eoa opacae (a. 4.6, pc. 4.4).

Taa 4. Peya yopoa aepa eoa (1) (2) o opaocep apa A, oopx - n <, n = 4x max 0,1 0,05 0,04 0,03 0,02 0,01 0,009 0, % oaooo 58,2 62,4 63,00 64,8 64,1 68,6 71,3 yopoa aoe coceoe aee A4x Pc 4.4. acoc oaooo yopoa aepa pa eoa o opaocep apa o aoo coceoo ae ap pe, a oaae aa cyae eoaooo yopoa , ce o xapaepyc e, o eop ceee eopyeoc aepa ee ecoo pax ae, o pe a eop p opeo ax ae e ee.

opoae oeo a ocoe ooe peoe o eco pep Bce paccopee eo p pee oo poo yopoae oeo a ocoe cepx oeo o eco p ep. poee cpaee oyex p o peyao. a oo aa coye aay, oopa oe, c oo copo, peea accec eoa oa, c pyo copo, eoa p pee ycox eopeeeoc.

Paccop apoae pooca eox cece pax o eco eoocece, paea y eoocec e ya ooo aoa . opa o ae pooca e eoeox e opax pacxoa eoo cec a eeoeoe e pecaea ceyx aax:

% oaooo yopoa 4, 4, 4, 4, 4, 4, 4, 4, a npouocma / ueu no opoooy exy aoa a epa a pooca ec., Texooeca Mapa o o epoa, .

1 2 Ceoa C 2-1A 16 10 C 2-15H 15 13 C 3-3 16 14 C 6-1 15 12 Apeao-oo- CB 2-59 10 10 a CB 3-6 10 10 CB 3-8 10 10 CB 11-6A 10 10 CB 11-20 10 10 a npouocma / ueu no opoooy exy aoa a epa a pooca ec., Mapa Texooeca o o epoa, .

1 2 Ceoa H-115 5 6 H-148 5 2 H-159 3 3 H-163 4 3 Beoocm op pacxoa emoo cecu a eeoemoe ueu eoa cec, op- eoa cec, op Mapa Mapa a pacxoa a pacxoa P T P T C 2-1A 1,3 0,55 CB 11-6A 0,8 2, C 2-15H 1,9 0,50 CB 11-20 0,44 0, C 3-3 1,575 0,55 H-115 4,12 0, C 6-1 1,9 0,66 H-148 3,24 0, CB 2-59 0,57 0,9 H-159 5 1, CB 3-6 0,84 1,67 H-163 3,3 0, CB 3-8 0,79 1, Heoxoo opee opeoc aoa pax ax eo o cec a epy eay eca.

Peyao ooo pacea yy ceye oaae: ceoa exa 1 103 3 (ea eoa cec) 35 3 (pacop);

apea o-ooa exa 1 69 3 (ea eoa cec), 34,40 3 (pac op);

ceoa exa 2 65 3 (ea eoa cec), 13 3 (pac op). Bceo eoxoo yc eo eoo cec 168 3, pacopa 82,4 3, eo eoo cec 69 3.

pe MA ocaeo aae, poey oo peca e epexypoeo epapx:

a poa e poo ca eo x c ece Ce oa exa pea o-oo a exa Ce oa exa C 2- C 2- H C - C 6- CB 2- CB -6 CB - CB -6 CB -2 H- H- H- H- ea eoa cec Pacop Tea eoa cec Ha ao ypoe oppyc ap apx cpae oe o o ooe aoy oeo ecoeo ypo, a o eaoc aa papoa oeo o ooy pep.

o ao oyex ap cec eop popeo.

a o oaao epo pepe, opaoa a coce eop ao ap ye coco opaoax oec ex ae oeo. ce ooex popeo o eo peec poeypa ea, poecce oopo apa e co o eoo cec ooceo e yoaec a eop p opeo e: apa C C C C CB CB CB CB 11- CB 11- H-115 H-148 H-159 H- 2-1A 2-15H 3-3 6-1 2-59 3-6 3-8 6A 0,703 0,792 1,000 0,742 0,000 0,000 0,000 0,000 0,000 0,837 0,818 0,828 0, P 0,297 0,208 0,000 0,258 0,388 0,335 0,369 0,276 0,328 0,163 0,182 0,172 0, T 0,000 0,000 0,000 0,000 0,612 0,665 0,631 0,724 0,672 0,000 0,000 0,000 0, yoaec a eop-coe eco e C C C C CB CB CB CB CB H-115 H-148 H-159 H- 2-1A 2-15H 3-3 6-1 2-59 3-6 3-8 11-6A 11- 0,124 0,116 0,124 0,116 0,078 0,078 0,078 0,078 0,078 0,039 0,039 0,023 0, B peyae oy ooee (oae) eca o eoo cec:

B eoo cec pope MA Hopaoae oec. oe 0,467 (1) 0,526 (1) P 0,277 (2) 0,258 (2) T 0,256 (3) 0,217 (3) Papoae oeo eo ypo epapx oaaoc a e, a p oo cocoe ce.

pe ce popeo oeo eo p pee p eeo opa, ye paccapa poey a aay c eco aa ap ooe oeceoo pe ocxoca o eoo cec R1, , R13 o ooe e ee o ap ooee N oeceoo peocxoca e.

aoo ooe R1, , R13 ce y paeo nd nd c,..., (oopy ye paccapa a opaoae cxo 1 e oecee ae), o oop oppye apy .

Cepy opeee a acoe poeee ap = TN.

1,00 0,39 0, = 0,39 0,39.

0, 0,72 0,39 0, nd Moeco eopyex aepa U opeeec eopo:

~nd nd v = {5,39;

5,39;

5,39}, a coppepoaoe oeco U = {1,00;

0,39;

0,72}, oopoe pecae papoae aepa, e cooecyee eceoy.

Moo poaapoa aay eoo p pee p e eo cxoo opa cyae, oa pep xapaepyc eco oea. Coca ooe oeceoo peoc xoca e o pya, oope cooecy coye ae paa. B epy pyy e: C 2-1A, C 2-15H, C 3-3, C 6-1, H-115, H-148, H-159, H-163, ooe oopx coyec ea eoa cec pacop. aoo x coca ooee oeceoo peocxoca o coyeo eoo cec. B a ece eco e ye cooa x opaoae oeca:

1 = 0,203;

= 0,190;

= 0,203;

= 0,190;

= 0,063;

= 0,063;

= 0,038;

2 3 4 5 6 = 0,051.

Cep P Q ooe R1, ,R8 opeec apa:

5,39 22, 1,00 2,36 P = Q =.

0,17 1,00 1,42 5, nd nd Moeca U, UQ opeec eopa:

P ea e. cec Pacop nd ;

20,14} vP ={22, nd ;

1,42} vQ ={22, Oya = {22,335;

1,416}.

nd Bo opy pyy e: CB 2-59, CB 3-6, CB 3-8, CB 11-6, CB 11-20, ooe oopx coyec ea eoa cec pacop. Bo cyae = = = = = 0,2. poe aaoe 1 2 3 4 ce, a epo py e, oy: ={1,427;

2,625}.

nd Ooa oyee peya, oy: ea eoa cec 22,335;

pacop 2,843;

ea eoa cec 2,625. oce opaa: ea eoa cec 0,803;

pacop 0,102;

ea eoa cec 0,094.

p ao cocoe ce eoe yopoae oeo co oecye peaoy.

pe aecee eo p pee aaa o ecex ax e pecaec oo o eoy py p.

Hapep, p cooa x ex eoa APOC aaa y e ocaea cey opao:

ao: K = {qi}, i = 1,,Q (Q = 13) oeco pepe ( ao aae e). K = {1, , 13}.

nq co oeo o pep q aoo oea (a eoo cec), n1 = n2 = n3 = 3.

Xq = {xiq} aa pep q. Hapep X1 = {1,3;

0,55;

0}.

|Xq| = nq, |X1| = |X2| = |X3| = 3.

Q Y = X1xX2xX3 oeco eopx oeo yi Y. N = |Y|= nq.

q= B cyae paccopeo aa N = 313.

B eoe APOC P poo cpaee eopx oeo oopx cya;

ae eope oe yy c ooeco oeca Y. Baae oppyec cco oeo y epo oopo cya L1, coco ceoox eopx oeo aepa, cpe oopx ce, poe oo, aye. To ec, cepy eoxoo ye cpaa eope oe, o aoo cxooec pyee, a oaae a o pee aoo eoa, e cpaa eo cpeceo oe (p ao cpae cepy pxoc eo ee cpaa ca pep).

poe oo, eo opepoa a aecee oe aece e oepa cpae, oope opa oece pep oy e pao pee.

4.3. Oea peoeoc eoo p pee c o pe yaco poecca p pee e ca a a peao ooo oeca eoo P yaae a aoc paoo opa eoa pee ope o aa P. p o poea cooec eoa peaeo aae oa paccapac yx ococx:

c oo copo, oo ocyo cooece eoa o e xapaepca peaeo aa, oop oy oece yco opa (opeeeoc, pc, eopeeeoc), oec a aepa (cpeoe epepoe), oeco pepe P, ocao aa ..;

c pyo copo, a op eoa cyeceoe e oaa cyee xapaepc aa, oycoee oooc a e pa coepeo opeoo a, oeaeo a P.

a xapaepca oy oece: eae eeae P ooac cye pep, e oce cyae opoe a epe;

peee opae P;

eo cocooc aa oo aecee oe a aecee, a oecee.

ooy peca epec e cepo o peoeo c pax eoo P. Ha o poeeo cpaee paccapae x ao e eoo, ocyeceoe p oo MA.

yaca poecca p pee oocc: aee poe , o, paee peee, aop ( ae py) ae pecoae pee poe e a ee peee a, cep oeee ceac, poeccoao aee opoca, c a c peee poe. Ec paccapa epecex c o pe poee poeyp p pee, o x oo pa e a ex, o yacye cpyypa opa, xapaepy e poey, cyeo oee ee apaepo (ye ca, o c cep) ex, o aaec opoca opao oy eo opa c e acca, yopoa o aoo opa apao (pya ceaco o p pee).

Ta opeeee e py yaco poecca p pee oy oe eo c pax oe pe, opaax cey x eeoc pee oopepax aa. B poeeo cceoa o e aoee peoeoo eoa P p yace cea c o p pee, cep. B po ceaco cya cye o-aeaecoo ayea, oe ypcoe pa o o opae, cae c papaoo popax poyo p pee. B po cepo e aopaop Moop aeca ypae eaoec ccea M . ea cy ae OAO Ȼ . ypca, pae yace pee e oo p pee aay eeoc x cpyyp.

Bce yaca cceoa o peoeo coppoa pe p oeo px eoo p pee.

cnepm.

1. Boooc oea aepa o pep epao.

2. Cpaeo eooe oeco peyex cpae.

3. Boooc poo eoe ape cpae cyax, o a opee ay oe yx apyeo eooo.

Cneuaucm no npumu peeu.

1. e cpyyp cce poecce p pee.

2. peocaee ocoepx peyao.

3. Boooc ya eeoc, ecoc, eooc apa epax, xapaepyx oe cceoa.

4. peocaee eoo cpec, oox poep coaco aoc cepx oeo.

5. Boooc a cceoae oecee oe o eo.

6. Meo oepe eo paec peee aay peax poe, eopeece oco eoa ayo paac.

Aa eoo p pee c o pe coppoax p epe pooc a coo MA.

p o a coppoaa epexypoea epapx poecca p pee:

Haoee peoe MP cep Ceac o p pee Bepae Heoe Heooe Opaee ocoepoc e poepa oecea paeca oe ape oeco cpyyp peyao eeoc coacoaoc cocaa apoa cpae cpae cce eoa eo P p eo aaa a ecee eo e eo cxoo epapx (1) P (3) opa (2) ooopc, o cep ceac o p pee oya pay aoc ( = 0,5;

= 0,5), a a opeee aoee 1 peoeoo eoa aa eo aapoaoc paecoo cooa, eo eopeeca oocoaoc, ooee ycy, peocaee.

oepe oeoc oeo cepo pee ece a cee o aoy pep paccapaex eoo.

Booocm oeuau amepamu no pumepu epao (1) oecea aa ooceo aoc cppyec coo ecye epao ao;

cep opepoa a oe cee oe.

(2) Cee peoe ( ui,u ) paaec ceo.

R j (3) coyec oo aeceoe ocae ocox aopo aeceoe paee peax pa oe apao pee.

Cpaumeo eooe ouecmo mpeyex cpaeu (1) p oppoa ooe peoe n oeo pey ec n(n - 1)/2 cpae, ocae oe c opaoc ep oye aoc opao. aa c pea. O oeca oeo cpeo a oeco cpae e ac.

(2) p oppoa ooe peoe n oeo pey ec n(n - 1) cpae. apaee ec c oo ao ae ee, y peecoc ooe. aa epe pa. O paoo oeca oeo a oeco cpae e ac.

(3) p cpae eopx oeo y oopx cya peyec ao apy apx cpae A paepoc NxN, e Q N = ( nq - 1), nq = m oeco oeo o pep q. B eo, q= a oea aop eoa, co opae P xye cy ae ye pao C = 0,25Q(Q - 1)m(m - 1). (ooee opoc oc p epaoc eeo ap). aoo pep co cpea oeoa aa. oeco cpae ac o oeca pepe, o oeca oeo a o pep, o e ac o oeca paccapaex oeo.

Booocm npououm enoe nape cpaeu cyax, oa onpeeum auyu oem u yx ampyumeo uu eooo (1) Oe oppyc oo epax ye-xye. Heoe cpae epeycope.

(2) Moe cooaa oea ( ui,u ) = 0 cyae, ec R j i-ma aepaa xye e j-ma aepaa o ecpa.

(3) Coece oe He a, apyc oe eopeec peycope, o peex pepax p cpae eop x oeo coyec oo pexaa aa, e o(i, j) = = 1 i-m ee peoeee, o(i, j) = 3 j-m ee peoeee, o(i,j) = 2 i-m ee j-m paoe.

em cmpymyp cucme npoecce npumu peeu (1) Cpyypa poe e epapx o ax ao poecce p pee. epapx oe e o yx ypoe o oo x oeca.

(2) Booa cpyypa cce e yx- pexypoeo e papx.

(3) Cpyypa cce ooa oo e pexypoeo e papx.

peocmaeue ocmoepx peymamo (1) peee eoa aaa oecex ax oaao paec ooe coaee peyao c cxo xapaep ca oeo cyae yxypoeo epapx oc c xo xapaepca cyae pexypoeo epapx.

(2) Meo p pee c eco cepa (pep), xapaepye eco oea, peocae pe ya, cooecye peaoy eoy yopoa oeo.

(3) poep eo e pecaec oo, a a o ope poa ceo a aecee oe oeo.

Booocm yumam eemocm, ecocm, emoocm napaempax, xapamepuyux oem ucceoau (1) Oe cepo e oy opaa eooc apaepo e e ex ce.

(2) cxo a c eee oe cepo. Oepa ee a opao, o aoee oppeo epepaaa e ey opa.

(3) Heooc ax axo paee coecx oeax cep o.

peocmaeue emoo cpecm, nooux npoepm coacoaocm cnepmx oeo (1) Coacoaoc poepec a ocoe oecex oepa.

p o cec OC (ooee coacoaoc), o ae oopoo oo cy o eaeoc eeaeoc epecope cye.

(2) poepa a coacoaoc e peycopea.

(3) eec oooc e oox oo (apyee paoc) oeax cepo cpae x a ocoe o opoo pee P. Coacoaoc, a opao, po epec aeceo.

Booocm am ucceoaue ouecmee oeu oemo (1) a oaao paee 4.2., aa oooc eec oe c ycexo cooaa p eoxooc (apep, apy c cye oea e o ooe oooc x ocoe yca pepe, oo aece oeo peay ceecooc e).

(2) Meo e peycapae opaoy oex ax, o, a ceye paee 4.2., oecey cocay aa ooo.

(3) oecee oe oy eppepoa caaa ae ceo (ao oee pcaaec opeee a o aec eo ae), a ae ye pooc cpaee eopx oe o. p o oee xapaepc pepe eooo yec aeceo, oeceo (cpaae pepe pocxo eo p cpae eopx oeo).

Memo nomepe npamuecu npueeue eo aauy peax npo e, meopemuecue oco emoa ayo pauamc aa xapaepca ea e ec cao ao, a a eo oa aacy opeee op eoa P cyae, ec aea eco oepe p pee opaac epe. Bo cyae aea poe aoo oox eoo P epecye py aa e oac pao eeoc, oope oy aoee eo poaapoa. o ocoe cee o opex (ye ocyecxc xopoo apeoeoax ce) peex a oo eoa (a. 4.7). B ae o aece eoa P opaye ac eo APOC, AP OPACC.

Meo AP (APa oeca) paccapaec aopa a e o p pee aaax cpaeecoo opa, oo cpyyppoa poey opa oece peye aa oey oox apao aepa pee ocaeo aa. Meo ocoa a apo cpae aepa: caaa cpaac e a epa, x paec aya, ae paa cpaaec co ceye .. Taoe cpaee e oepo oep oe eo pyoeo. Bo eoe o cepa peyec ocyec pa poae oxx, c o pe cepa, oeo aoo pep o aoy yx paccapaex oeo. p aee cpae peoex oeecx apao, pa o x a y, cep eo ye oea pep, .e. coca ooee peoe pepe, o e ooeo oo eoa.

Meo OPACC (OPaa ACCa) peaae acca paccapaex oeo, .e. opeee paeo c oea oy oy accy.

Taa 4. B aa P pax peex oacx, oope poaapoa cpaae eoa P peea oac ooa MA 1. epce cooa ceecoo oa pacopa [92].

2. ooecoe apoae pa Cyaa [91].

cooae 1. Mpoooec poecc ec [55].

eeo o aecee 1. Papaoa CP peo eeoc oepecoo eo p aa, oopa ocyece acca oeax pee ccyoaeo o x peococooc a ocoe oaae e .-oo. eeoc ccyoaea (OPACC) [63].

pooco MA 1. Oa op epoycao, coye yo.

2. apoae pa p-pooe opee co poy.

cooae 1. Bcecopo aa eeoc pep: cocaee eeo ea, oea coco .. [55].

o oa MA 1. Opeeee aaa, aoee oypoo cpe pa ee peep opo [92, 115].

Opaoae MA 1. Aa pa ceo opaoa CA, xoe oopoo opeee aoee epo ceap eo pa a epo 1985-2000 . [91, 92].

2. Aeca peoaaee ce oe (T).

3. Opeeee ypo pa oea [118].

aecee 1. Oea oypcx cex pao o aeae (oe eo p ac oe oae pao);

coco oo e pee ye pao ex, oope apa oaooe o eco ao, ya aecee pep, peee cepa o. paoa [117].

2. Oea HP [63].

Mea MA 1. Oea eoc eapcex cpec [91].

2. paee e.ocyae [91] (opeeee aopo, x a cepae poca co. coepa o e).

cooae 1. aooe cce eco aoc [69].

eeo o 2. pe pee p oee yoaoo coco eoea.

aecee 1. oppoae a a ecx aocecx eo p cce [62].

pee aeee ayoe pae eoo peoaaec ceyx apaex.

- e eopeeeoce cyex cepo e eex 1) ce.

- cceoa o epep, a e cpe aa. c epe cye e epax ce.

- Oea eoa coceoo eopa py eoo ocpoe o aao ape apx cpae oeo oaoo eoo x yopoa.

- Papaoa eopeecx oco oepoa poe p pee e epapx.

- Boooc eooo cpae cepa oeo, a aeoc oycoc oe = 0. p ao oye ij eoxoo opoa eo oye aoo coc eoo eopa ap.

eca paoa [123] o oe eope a eppoa poeyca a ecoeo-cpyx peeax (o oo e aece oeceo a p p pee c ooa pooy aepaecy cpyypy, yc paypoo peeo).

peee eoa aopo opaoc ye pepa.

2) eca paoa [122] o pee eoo Opocoo eeoo opa. B eo apaee, caoe c opaoo eeo opa, poo pecaeo pa aopa, o eo peee c o e eoo Opocoo a e eco.

Pae eoa cao c cooae a, oox 3) oea oe a o aece, a o oece pep peeax oo a (ac cocax eopa oe aecee yepe, ac oecee).

o oea pepe eoo p pee c o pe cepo o coppoao ooee peoe R1 ce eop popeo:

pep MP Bepae o-o Heoe Beop a cpae cpa. popeo Bepae a 1 2 4 0, o-o cpae 1/2 1 3 0, Heoe cpa. 1/4 1/3 1 0, oyex popeo caoc oe, o cep o aoee peoeo xapaepco ae (opoco) e c ae epax a, oox aa oe coecx oeax.

Ceaca o p pee o coppoao aao oe ooee R2, o oopoy ce eop popeo:

pep Cpy- oco- Hee- Coa- Oe. pa. Beop MP ypa epoc oc co. coca. ep. pop.

Cpyypa 1 1/5 7 1/3 1/4 1/4 0, ocoep 5 1 7 5 4 5 0, oc Heeoc 1/7 1/7 1 1/7 1/3 1/6 0, Coaco 3 1/5 4 1 1/3 1/3 0, aoc Oe.

4 1/4 3 3 1 1/2 0, coca pa.

4 1/5 6 3 2 1 0, epee ceaco o p pee, a yeaec, aoee aa ocoepoc peyao eoo, poepea oece a, aee ceye paecoe apopoae eoo oo oc cooa oecey cocay.

Meo p pee c o pe coppoax pep e oo ocaoo oeo cpa a ocoe paee ceax xa paepc.

pee cpay eop popeo eoo o ooe a o aax xapaepc:

cnepm Meo p pee pep (1) (2) (3) Bepae a 0,1669 0,0634 0, Mao oooe oe 0,8000 0,1333 0, co opoco Boooc eox cpae 0,1085 0,6300 0, Cneuaucm no npumu peeu Meo p pee pep (1) (2) (3) Opaee cpyyp cce 0,7838 0,1349 0, ocoepoc peyao 0,5470 0,3445 0, e eooc e eex 0,0752 0,7418 0, ce poepa a coacoaoc 0,6939 0,0528 0, oecea cocaa 0,7504 0,1713 0, paeca apoa 0,7223 0,0727 0, Ooee (oae) pope eoo p pee cc p oo poeyp epapxecoo ea, a a co opoo ypo :

MA = (0,5584x0,5)x0,1669+(0,3196x0,5)x0,8000+(0,1220x0,5)x0,1085 + + (0,0731x0,5)x0,7838+(0,4532x0,5)x0,5470 + (0,0311x0,5)x0,0752+ + (0,0942x0,5)x0,6939 + (0,1508x0,5)x0,7504 + (0,1976x0,5)x0,7223 = 0,4955.

Aaoo ce ooee pope pyx MP:

- aecee eo p pee 0,3100, - eo p pee a ae eeo o 0,1945.

Ta opao, c o pe yaco poecca p pee , aoee peoe aaa ecpyyppoax o opepax poe oaaec eo aaa epapx, op o peoeoc aecee eo p pee.

5. opoa aop oep p pee Copee epo pa cce ypae pooco xa paepyec co poco oea opaox ooo, pe ao oe opa aaec poeoc, opoe, acoo-aoco eeoc. B poeoc poc oea opa oycoe yeee oea pooca, ycoee ycaeo poy, coyex aepao, exooecoo oopy oa, pacpee peyae oepa ceaa po oca ex ypex ce ooecx oeo. Too a ocoe coepeeoo ooe, aoe, epepao opa ooo pecypca, .e. ae ocoepo opae, ooo pao aoe ypaee o eeoc emuoe npumue pee u. Bax ycox apoaoo opa oax ypa x pee peyec caa paoopaa opa, o ce, cepo-coeyeo xapaepa.

B ae 5 paccapac ace papao opoaoo a opa p pee ycox eopeeeoc, paoo o o ceacy oeco aae ooaopo poeo c ya pa ao eoa p pee. Tao o poa aop oece oocoaoc oaoo opa, oo ceacy e oo oaac a ao-o o apa pee (a o aco ae oepe p pee), a caoy oe ceooe apa, peocaee pa eoa, cea a x ocoe ooec pao o.

p papaoe opoaoo aopa p pee oco oe ae yeoc yey ce ypaeecx pee, oopa poac ceyx opocax:

- a opa poecce p pee ce aoecye ee cce, oopo paec peee;

- a coca opoc cepa, o oe oo o opy poa epax, a e oecex aeopx, ya cxoo ece ocoeoc eoea;

- a opao oo poep coacoaoc cye cepo;

- ae eo ye cooa p ce popeo pac capaex oeo.

eco, o cooae x eoo cex poe yp poecce ypae, co oe o , a pao, e axo ooo pee ceaca, ec e ocyecea x oepa peaa. B paee 5.4. ocaec CP "Bop", pe aaea aaa apoa eeoc poeoo pep, ao eoo oopo ec opoa ao p apx ooe.

5.1. ooop a MA eoa p pee p eeo cxoo opa aoa aa eoa aaa epapx (1) oe opaoaa e oeca S(m)={1/n,,1,n,, e n=1,,m}. p m=1 S(1)={1}, p m=2 S(2)={1/2, 1, 2} .. B acoc, MA m=9, S(m)={1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

aoa aa eoa p pee p eeo cxoo opa (2) pecae coo opeo ecex ce S=[0;

1].

B aecex eoax p pee (3) yepa oeo a opoo ae Xq pep q coyec p aypax ce.

oecey ay, o cyae, oo opaoa a oe Z(m)={ce ee ca 0 N M}.

Opeo [0;

1], oeco {1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2 1, 2, 3, 4, 5, 6, 7,8, 9}, oe (aoe a eoo (1), (2), (3)) c peea , a coc, e. Bo oecax S S(m) e eco oepa a + b = supS{a;

b} [ a + b = supS ( m){a;

b} ], ab = infS{a;

b} [ ab = infS (m){a;

b} ].

Moeco S(m) ec cpe coco 2m-1 eeo.

Moeco S oeco ooc oy (a epep o peo ecex ce).

Peea ec oo, ec oe oeco ee eeo ee a oy epx, a oy pa. Opeo ece x ce [0;

1] ec oo peeo.

Ta a ca oea peea oa, o oeco S(m) a oe a peea ec oo peeo.

oooc oppoa oecex a, cooecy x pa eoa p pee, eoxoo ycao pa o epexoa o oo x pyo. B o cyae cepy ye oca oo o pa epao oe peoeoc oeo;

p o oecee a, cooecye aoy eoo p pee, yy coppoa aoaec.

epexo ey aa ooe a ocoe x ooopoo oo pae py pya. Tao ooop ooo ycao eco cocoa. He a ooop oo oya oppee peya py eoo a ocoe oyeo a. pee eo ope ax cyae.

cao ooop pee S peey S(m) aoopo. Oo paee pee L peey L aaec epxu [uu] oo opuo, ec (a + b) = (a) + (b) [ (ab) = (a) (b) ] x a, b L. ooop pee L peey L opeeec a oopa ee, eec epx ooopo oopeeo.

Opee oopaee : S(m) S a opao, o m + - n m + - n, ecu a < 1,, ecu a < 1, - 1 2m - 2m (a) =, (a) =.

2m - (m + 1 - n), ecu a >= 1. m + n - 1, ecu a >= 1.

2m 2m - 1 - puep. yc a S(m), m=9, oa 9 + 1 - 9 1 9 + 1 - 2 8 9 + 1 - 1 (1/ 9) = =, (1/ 2) = =, (1) = =, 2 9 - 1 17 2 9 - 1 17 2 9 - 1 9 + 2 - 1 10 9 + 9 - 1 (2) = =, (9) = = = 1.

2 9 - 1 17 2 9 - 1 oae, o a opeeeoe oopaee : S(m) S ec epx ooopo.

m + - n, ecu a < 1, - 2m yc a, b S(m), oa (a) =, m + n - 1, ecu a >= 1.

2m - m + - n, ecu a < 1, - 2m (b) =, e n n cooecy pecae m + n - 1, ecu a >= 1.

2m - ce a b e 1/n n, e n=1,,m ( eea a), 1/ n, n, e n =1,,m ( eea b).

Tpeyec oaa, o (a + b) = (a) + (b).

eceo, o opeee oepa + peee S(m) (a + b) = (supS (m){a;

b}) yc a<=b<1 (a=1/n, b=1/ n, n>= n ), oa (a + b) = (supS (m){a;

b}) = (b).

m + 1 - n m + 1 - n' (a) =, (b) =. Ta a n>= n, o (a) <= (b), .e.

2m - 1 2m - supS ({ (a);

(b)} = (b) (a + b) = (a) + (b).

yc 1

b}) = (b).

m + n - 1 m + n'- (a) =, (b) =. Ta a n<= n, o (a) <= (b), .e.

2m - 1 2m - supS { (a);

(b)} = (b) (a + b) = (a) + (b).

yc a<=b, e a<=1, b>=1 (a=1/n, b= n ).

Bo cyae (a + b) = (supS (m){a;

b}) = (b), m + 1 - n m + n'- (a) =, (b) =, .. 1n<= n 1 p x n=1,,m, 2m - 1 2m - n =1,,m, o (a) <= (b), .e. supS{ (a);

(b)} = (b) (a + b) = (a) + (b).

To ec oopaee : S(m) S ec epx ooopo.

Aaoo oo oaa, o cex a b oec (ab) = (a) (b). Ta opao, oopaee pee S(m) peey S ec epx, ooopo oopeeo, .e. peea S(m) ooopa peee S.

Opee oopaee : S S(m) oo pa cocoa.

Hapep, opeo [0;

1] pa a 2m1 epao, aoy epay oca cooece ee oeca S(m) o ceyey pay:

1 1 Ec, o x, ec x <, o x ..

0 x < n 2m - 1 2m - 2m - 1 n - oeca S(m), e m=9, oopaee : S S(m) pecaeo a pcye:

1 0 2m -1 2m - 1 n n Bo cyae oopaee : S S(m) opee a:

1 a aoo, o k a < (k + 1), e 0 k 2m - 2m - 1 2m - 1/(m - k),ec k < m, (a) = (k + 2 - m), ec k m.

Hapep, cyae SS(9):

p k=0, a [0;

1/17) 1/9;

p k=8, a [8/17;

9/17) 1.

ooopc p k=2m-1 a pa oe opea poey o, oa p k=16, a [16/17;

1] 9.

Oeo, o oooe oopaee : S S(m) ec ooop o.

poep, eceo ycaoe ooop a oo oya oaoe peya papoa aepa p epe xoe o oo a pyo.

puep. Opaocepa apa MA ee opaoa a coce eop (0,095;

0,654;

0,249).

1 1/3 1/ 3 1 6 1/6 oyc ycaoe ooopo : S(m)S, opee aoo eea ap cooecy ey ee S.

m + - n, ecu a < 1, 9 + 1 - 1 - 2m Ta a (a) =, o (1) = =, 17 m + n - 1, ecu a >= 1.

2m - 9 + 3 - 1 11 9 + 1- 3 7 9 + 6 - 1 (3) = =, (1/ 3) = =, (6) = =, 17 17 17 17 17 9 + 1 - 6 (1/6) = =.

17 B peyae peopaoa apa ye e 9 /17 7 / 17 4 / 17 0,5294 0,4118 0, = 0,6471 0,5294 0, 11/ 17 9 / 17 14 / 14 / 17 4 / 17 9 / 17 0,8235 0,2353 0, pe oye ape eo p pee p ee o cxoo opa, oy eop ceee eopyeoc aepa ((0,4118;

;

;

( 8;

;

8).

1,0000;

0,4118))..

Hopay o eop, oy (0,2258;

0,5484;

0,2258) oyae o o cxooo peya.

pe ape eopey eppoa-poeyca. oy opa oa coce eop, e coaa c cxo.

(0,3716;

0,6559;

0,4681) a, o p a ycaoeo ooope apa epe co coca c o pe ocoepoc eec e opa oo ceo cxox oeo.

puep. Hecpooe ooee eeoo peoe ee :

1 0,2 0, 0,3 1 0, 0,4 0,6 Beop eopyex aepa, cooecy .o.., nd = (0,9;

0,9;

0,7) (, c yeo opaa, (0,36;

0,36;

0,28)). peo R paye a ocoe ycaoeoo ooopa apy y 9 1/6 1/4 9 1/3 3 pe ao ape eopey eppoa-poeyca, oy e op popeo:

(0,1958;

0,4483;

0,3558), e coaa c eopo ceee eopyeoc aepa.

Ec poec cee eopa ceee eopyeoc a epa o ao ape, o oy eop, ae e coaa c cxo (0,4958;

0,5042;

0).

Ta opao, a ycaoee ooop e oo oy a oaoe peya papoa aepa p epeoe oo oeceo a pyy.

B opoao aope oep p pee pea aec cooa cpae oeo aecey ay, epa e oe oopo ac o opeoo pep, o oopoy pocxo cpaee. yx peoex oeo ui, uj caaa paec o, oop, c o pe cepa, ee oy aoc. ae oeaec eo peoeoc o epao ae. aa ope poaa a 8 cpex oeo peoeoc o aao co ao MA eoo p pee a ae eeo o. B eoax p pee p eeo cxoo opa, xo C.A.Opoc peaaec epepa aa [0;

1], o aec paccopex pepax ocyecec pe cpea coyc 9 oeo peoeoc 0,1;

0,2;

0,3;

0,4;

0,5;

0,6;

0,7;

0,8;

0,9.

pep ooo epao a pee a pc.5.1.

caoe peocxoco yepeoe aeoe 1 2 1 2 1 Pc 5.1. Bepaa aa cpae oeo caoo peocxoca, yepeoo aeoo yaaec cee aoo peocxoca.

o paoy ae ececo epeeo epao a cooece ey cac oea MA 1,,9 cooeceo. Ec (ui,u ) =, o (u,ui ) = 1/.

R j R j peocxoco aoc coe ooe paa oe ooop : S(m) S ycaaaec cey opao:

(a) = a / m.

Bo cyae (max(S(m)))= (m) = 1, (min S(m))= (1/ m) = 1/ m2 >0, o ec ;

m 0;

1.

m Ta opeee ooop e cax cyecex eoca o paee poxc oopae ecoae peyao pa poa o ooe peoe o ooopoo oopae o ce eo o e e cocoo ce eopa popeo. o ceye oo, o, yoee ap a ocoy e ee ee op aoaoo aoo coceoo eopa.

p a opeeeo ooope opaocepa apa A = oopaaec eeoe ooee R( ). Taoe eeoe oo ij R ee yoeope eoy p pee a ae eeo o, xo e ec peec.

Peecoc opeee C.A.Opocoo (ui,ui) = 1 ;

aoy R yco oyee eee ooe e yoeop. Ho, a cey S T e eoa p pee a ae eeo o, R = R \ R. Bo S cyae (ui,ui) = (ui,ui) - (ui,ui) = 0 p o (u,u ), .e. oy R R R R i i eoe ooee ec oppe ce o ey eopa eopyex aepa.

Opaocepa apa p ao oopae cae oe pa ee ooee ecpooo peoe. Heocao a oo ooopa ec eoooc ocyece eox cpae, o, poe, ceye ye paee opeeeo epao a.

Ceye oe, o oyeoe .o.. -eoe, a a eo m y paeoc yoeope yco max{ (ui,uj ), (uj,ui)} > 1/ m2 x ui, uj.

R R 5.2. Opaee cpyyp coo pacpeeeo cce eoax p pee o cce Cpyypa poecca p pee ae ce cpyypy coo pacpeeeo cce, oopo paec peee. o coo cceo oaec epapxec opaoaa eeapa eo yopya cooyoc ooo ca opaoo cax aoecyx eeo. pepo coo cce ec ccea ypae pooco. O oo, acoo oo oo ye ocaa oe cce a opeeeo ypoe ee yo poa, ac aeco paex pee, a a, e oc ypae cceo. B poecce yopoa cox cce ypae poea p pee peayec a poea opa ypae, epeoeo ccey aaoo coco eaeoe.

poea oaoo opa o cyae oe peea e oa p pee, oo exc aepa U={u1, u2,, un} opee aoee peoee. Oo poe yopoa cox cce ec eopeeeoc ee coco . Taa eopeeeoc poec ceye:

- eoooc oo oo oca eyee cocoe cce;

- eoooc ooo yea pea cce a ypae o ec;

- eoxooc yea ooo oeca aopo yopoa cce;

- oea pa apaepo cce oc aece (epa) xapaep.

B ax ycox pa peee eoxoo oee aea peaoc eoa, ya eeoc oca poe. B o cyae, exc eoo p pee aoee peo e yy eo p pee a ae eeo o e o p pee ycox eopeeeoc, peocae oooc oeppoa cye oea cepo.

Ocoeoc opaa x cox cce ypae e c epapxoc. epapx ec eoopo acpae cpyyp cc e, peaaeo ye yoax aoec ee ooe x oec a ccey eo. Oeo, o epapx cpyyp coo cce oa a opaee poecce p pee. B pax eoax p pee a ae eopeeeoc o ocaec o-paoy.

B MA (1) ocpoee ooypoeo epapx o cooc ec ep ao poeyp p pee. B eoe p pee p eeo cxoo opa a oece aepa U={u1, u2,, un} oe aao ecoo eex ooe ecpo oo peoe (.o..) pax cepo Rk, k=1,,m, e m o eco cepo. peoeoc cax cepo opeeec p oo ee ooo .o.. N, aaoo a oece E cepo c y e paeoc (ek,el ), ek,el E, ae oopo oaa cee N peoe cepa ek o cpae c cepo el. Ta opao, ao eoe eo pcycye pexypoea epapx e cep aepa, oopy oo paccapa a epapx e pep oe aepa aepa. B aecex eoax p pee, acoc, eoe APOC, a epo ae op o pyc aa aecex oeo aepa o pep, e ij ij-aecea oea cepo i- aepa o j-y pep, e i=1,,n, j=1,,m.

pumepuu Amepamu S1 S2 . Sm u o11 o12 o1m u oij un on1 onm a , eoe APOC ae eo e pcycye pex ypoea epapx "e pep (cep) aepa".

Ta opao, cpyypa coo cce oaeo axo coe opaee poecce p pee. B eoax (2) (3) coyc pocee epapx, oope, poe e aepa, oy oopaa o pep, o cepo, yacyx poecce p pee.

Cooc e cce xapaepyec o co aoec ey o cye oe aopa paoo a cee aoc, a ae pya e c pa e poooo epeca. Bce aae aop a oo oc eoooc opa ye aepa. opae a o cooc ae ceo eoxoo cooa oeco ypoe, oee pex.

Haoee pacpocpae a epapx c oae epapx, ep oopx coepa o ee e poecca p pee, a eeae ypo a ce pae aop, o oopx ac ocee e. oae epapx opae c a a a:

- epapx poo poecca, poepye cyecyee coco e a aoee epooe yyee;

- epapx opaoo poecca, opeee o ypae oce eaeoo yyeo.

epapx poo poecca coco ceyx ypoe: e (o yc epapx);

apaep, xapaepye e;

aop (ecye c);

e aopo;

ooe aepa, oopx paec a ya.

epapx opaoo poecca coco ax ypoe, a ceap eaeoo yyeo;

poe, pooecye eo oce;

a op;

e aopo;

ep, oope eoxoo pep pee poe.

epapx poo opaoo poecca oo cooa py x eoax p pee. Paccop o a pepe eoa p pee p eeo cxoo opa.

Paccop oay epapx H c k ypo: L1,,Lk.

a i- ypoe ae ce mi oeo (c. pc. 5.2).

Li={ai1, ai2, ,ai(mi)} i- ypoe epapx, i=1,,k.

epoo ypo m1=1, L={b}.

epapx H oo paccapa a cooyoc ypoe Li:

k k mi H = Li = aij.

i=1 i=1 j= Ha opo ypoe epapx aao eeoe ooee ecpooo peoe R21 (.o.. oeo opoo ypo o ooe epoy oey ecoeo ypo) a oece L2={a21, a22, , a2m2} c y e paeoc (a2i, a2 j ).

R L1={b} e epapx L2 ypoe a21 a22 a2m Li ypoe ai1 ai2 aim i Lk ypoe ak1 ak 2 akm epee k aepa Pc 5.2. oaa epapx poecca p pee Ha ao i-o ypoe Li={ai1, ai2, ,ai(mi)} aaec coo .o.., coo eeo a ecoe ypoe m(i-1), e i= 2,,k.

Ri1, Ri2,,Rim(i-1) .o.. oeo i-o ypo o ooe aoy oey ecoeo i-1 ypo.

1 (ai1,ai 2) (ai1,aim(i)) Rij =, (aim(i),ai1) e (ail, air ) 0;

1, i=2,,k, j=1,,m(i-1), l,r=1,,m(i).

Rij Ocoa e aa p pee oyee eopa pop eo eeo eo ypo epapx o ooe e eey epoo ypo. Peee ocoo aa ooo eco cocoa .

1 cnoco. (Ha ocoe poeyp ea MA).

aoo .o.. Rik, e i=2,,h, k=1,,m(i-1), opeeec eeoe ooeco eopyex oeo Liknd ooceo k-o eea (i-1) ypo.

a oe p o xapaepyec ye paeoc nd (aij ) [0;

1], i=2,,h, k=1,,m(i-1), j=1,, mi.

Rik nd S (aij ) = inf (1 - ( y,aij )), aij Li, Rik yLi Rik nd S (aij ) = 1 - sup ( y,aij ), aij Li.

Rik Rik yLi B o cyae epapx H pecaea e cooyoc eex ooec, e eop popeo apx ooe y paeoc ee ooeca eeo epapx.

2 ypoe,,,,, e pope i-o oea 2 211 21i 21(m2) 21i o ypo o ooe 1-y o ey ecoeo ypo.

3 ypoe,,,, Beop popeo o 311 31i 31(m3) eo peeo ypo o,,,, 321 32i 32(m3) ooe o ce oe .

a opoo ypo.

,,,, 3(m2)1 3(m2)i 3(m2)(m3) k-ypoe,,,, Beop popeo o k11 k1i k1(mk) eo k-ypo o ooe,,,, k21 k2i k2(mk) o ce oea (k-1)- ypo,,,, k(mk-1)1 k(mk-1)i k(mk-1)(mk) Ta opao, c cocex ypoe epapx Li-1 =X, Li=Y opee ec ee cooece X Y 0;

1, oopoe oo peca e ap y paeoc eeo X ooceo aoo oeo y Y.

(i+1)(mi) (i+1)11 (i+1) (i+1)(mi) (i+1)12 (i+1) Wy(X) =.

(i+1)1(mi+1 ) (i+1)2(mi+1 ) (i+1)(mi)(mi+1 ) L2 Wb(L2) = (L2) ={,,,, }.

211 21i 21(m2) b a opeeeo epapx, ee oopo c ee ooeca, pea eopea, oaaa paoe [37] peca a coo peee epapxecoo cea apa Wy(x):

y paeoc eeo eo k-o ypo epapx ooc eo e b opeeec cey opao:

(Lk ) = Bk * Bk-1 *...* B3 * (L2 ).

b b Teopea oaae cpaeoc pee MA oopepa x aa c eeo pae aepaa pep c oye e y oeoc. p o y oeoc paccapaec a y paeoc oao e a oece aepa.

2 cnoco. Ta a cxo a cocoe p pee a ae eeo o c eee ooe, o oppeee pe aop cep eex ooe. a o oaao a oee ocoep x ec aop cep .o.., aoe o opx xapaepyec eco oea.

1 (a21,a22 ) (a21,a2m(2)) Ha ocoe .o.. R21 = eoo (a2 m( 2),a21) p pee a ae eeo o c o cepo coppye nd oeco eopyex aepa L 21 opoo ypo o ooe e epapx.

Cooecy eop ceee eopyeoc aepa nd (a2 ) [0;

1], j=1,,m(2) opaye, peyae eo yy oye R21 j eca oeo opoo ypo ooceo e epapx: {,, }.

1 m Ha pee ypoe epapx coppoa .o.. R1, R2,,R(m2) (x o eco coaae c oeco eeo a opo ypoe m2) pe oeoc oeo peeo ypo o ooe aoy e eo opoo ypo:

(u,u ) (u,u ) (u,u ) (u,u ) 1 1 1 (m 3) 1 1 1 (m3),,.

R = R = 1 (m 2) (u,u ) (u,u ) (u,u ) (u,u ) (m3) 1 (m3) (m3) (m3) 1 ( m3) (m3) Cpo cepy P .o.. R1, ,R(m2) e P = Rl (ui,u ) = min{ (ui,uj )}, l=1,,m2.

j S T C oye .o.. accopyec P = P \ P.

Opeeec oeco eopyex aepa UPnd.

Cpoc ya cepa Q = Rl, l=1,,m2.

l cep opeeec oeco eopyex aepa UQnd. Paccapae epeceee oec UQnd UPnd, nd nd nd (ui ) = min{ (ui );

(ui )}.

P Q oye eop ceee eopyeoc aepa opa ye, peyae eo oy ooee eca oeo {,, } 1 m peeo ypo o ooe e epoo ypo (p o ye oa aec ye opo poeyo ypoe). aee {,, } 1 m .o.. eeaeo ypo pee o e aop, oya ooe e eca 4-o ypo .. B oeo oe ye oye eop ceee eopyeoc aepa caoo oceeo ypo epapx:

nd = { (u1),... (umk )}. Beop oax popeo paccapaex k k k aepa W={w1,,w(mk)} ye oye opaae eopa nd = { (u1),... (umk )}. Ta opao, oo copypoa ceyy k k k eopey.

Teopea.

yc H oa epapx. Li-1, Li, Li+1 (i-1)-, i-, (i+1)- ypo epapx cooeceo, i=3, ,k-1.

W(i-1)=,..., eop popeo oeo (i-1)-o ypo (i-1)1 (i-1)(m(i-1)) ooceo e L1={b}, i=3,,k-1. p i=3 W(i-1)= W2=,..., 21 2(m 2) opaoae cee eopyeoc aepa ooe : L2xL2 0;

1.

R : LixLi 0;

1, i=3,,k-1, j=1,,m(i-1) ooe oeo i-o Rij ypo o ooe j-y oey (i-1) ypo.

: Li+1xLi+1 0;

1, i=3,,k-1, j=1,,m(i) ooe oeo R(i+1) j (i+1)-o ypo o ooe j-y oey i-o ypo.

Beop popeo,..., oeo Li+1 ypo ooc (i+1)1 (i+1)(m(i+1)) eo e {b} opeeec cey opao:

nd nd nd nd 1. = min P i Q (u ) / Pi );

Qi (u ), j=1,,m(i).

(u );

i ij j j min (u j j j nd nd nd 2. = min Pi+1 (u );

Qi+1 (u ) / Pi+1 Q (u ), );

nd i+1 j (i+1) j j j min (u j j j=1,,m(i+1).

Ta opao, eo p pee a ae eeo o aece epoo aa eecoopao a ocpoee epapx po ecca opa aepa. Cpaee oeo a ao ypoe oo poo eoo. ye aee opaa oyex oeo aepa aoo ypo, pe poeypy ea MA aop "cep" pyx eoo, oo oy pope aepa eo ypo o ooe e epoo ypo.

5.3. Bee ecoacoaoc cye cepo poepa a coacoaoc (epoopee) oeo cepo e oeea ac o cex eoo p pee. O oeax oy a cya, a -a eoppeo ocaex opoco (apep, p cpae oe x o aoc oeo pyo cpaaex ey coo). p cox epapxx coepeeo ea ecoacoaoc oeo cepo oo ea eoppe x peyao papoa aepa, oece co ypoe ocoepoc aaa poeo cya.

Coacoaoc ooe, oe cyae, oaec a ce a (apaa aijajk = aik ) paa (opoa coacoaoc).

Coepeo coacoaoc oc pyo, ooy cyecy pa e oxo oee cee ecoacoaoc.

Beoe aaa epapx opeeec oo apaa coaco aoc. oaaec, o ooea opaocepa apa coacoaa oa oo oa, oa =n. cec pae max max ca Aw= w, e w a coce eop. B [94] peaaec max cey aop ce : c = Aw ;

ci = ci / wi, i = 1,...,n ;

max / n (yo apy A a eop w, ae oye e max ci i op oe a cooecye ooe w. Cpeee apeecoe oyex ae ac peo ).

max B oe cyae <>n. oe coacoaoc cec max ooee o coacoaoc C* (ec coacoaoc).

C*= ( - n) /(n - 1), e aoe coceoe aee opao max max cepo ap. ec coacoaoc, ceeppoa cya opao, aa cya eco (C). Ooee C*/C, e C cpe cya ec ap oo e opa, o cxo a, aa ooee coacoaoc OC. aee OC, eee 10% ( paeco pee oycaec aee, e peaee 20%) caec pee.

B [93, 94] yepaec, o epaoc peoe oe ecece ee, a e cece o cyex a yex. Bpe cyae epaoc e yaec ea.

Ceye oe, o ooee coacoaoc xo ooe poopeoc cyex cepo, o ec o ece oaaee ao poopeoc. B eoe aaa epap x p OC>20% peoeyec epecope cye. Cyece eocao MA ec o ae eoooc opa ae cepo a e opoc, oope a ay ecoacoaoc.

B opoao eoe p pee cec OC, ec oo eyoeopeo c o pe P, o peaaec oo ocpoe ooe a pao, a apao coacoaoo.

B [81] ooee R aaec pa, ec R R R. Ba coc o eeo oepa poee eex ooe e ec aca paoc, aca, acyaa. o paoc eoax p pee a ae eeo o o payeaec aca paoc. Maca paoc aaae ceyee ycoe a y paeoc eeoo ooe R: (x, y) >= supmin{ (x, z), (z, y)}. a o, aoe yco R R R zX e paoao oy, o a ee eeoo ooe e ee cooecyeo ey eea acoo poee eeoo o oe caoo a ce.

Ec paccapa aoe opeeee a opeo pepe ee 1 0,33 0, oo ooe: 0,1 1 0,77, o oa eo ocaoo oea.

0,95 0,2 Hapep, 2- ee peoeee 1- ee peoeee 1-o co cee a21= 0,1. 3-o co cee a13=0,25.

a, 2- ee oe peoeee 3-o xo c a ee cee a21= 0,1 a13=0,25, .e. co cee, e ee, e 0,1.

2- ee peoeee 2- ee peoeee 2-o co cee a22= 1. 3-o co cee a23=0,77.

a, 2- ee oe peoeee 3-o xo c a ee cee a22=1 a23=0,77, .e. co cee, e ee, e 0,77.

2- ee peoeee 3- ee peoeee 3-o co cee a23= 0,77. 3-o co cee a33=1.

a, 2- ee oe peoeee 3-o xo c a ee cee a23=0,77 a33=1, .e. co cee, e ee, e 0,77.

Ta a ce epecee yco o oc oopee o, o a23 oo e ee, e aoee {0,1;

0,77;

0,77}, .e.

a23 0,77. Taoe coooee oec a23. Aaoa poepa pooc cex aij,i, j = 1,..,n.

peeo ap ee acoe poeee A2 pao 1 0,33 0, 0,77 1 0, 0,95 0,33 Cep eo ee e ee, oope e ee cooe cyx cxoo ape. Ta opao, o cyae aae p apye paoc apoo ooe.

Ho ao coco poep opoo coacoaoc e ec pee. Ta, apoe ooee peoe, cocaeoe a oc oe oecex ax, oaaoc epa coaco pacco peoy opeee c ec apye paoc.

B aecex eoax p pee paccapac eoo pe oxo oye pax ooe. O x peca e coo poeypy poep oppepo oeo cepa poec ce poee apx cpae. oce aoo poeeoo cepo cpae ap oeo pooc pacpocpaee oyeo op a o cpae oeo o paoc (paoe aae).

Ec cepy pec oe xiX, xjX cep oeae, o xi peoeee xj, .e. (xi, xj ) P (ca ooee peoe ), oa xk ax, o (xj, xk ) P (xj, xk ) I (ca ooe e epa, .e. e pay aoc), ceye (xi, xk ) P.

Ec cep oeae, o xi paoea xj, .e. (xi, xj ) I, oa xk ax, o (xj, xk ) I ceye (xi, xk ) I, a xk ax, o (xj, xk ) P ceye (xi, xk ) P.

aee cepy peec ceya apa oeo, oopx ooee ee e opeeeo. oce oye oea cpoc pa oe aae .. o ex op, oa ooee e ye ycaoeo cex ap oeo X. p ao poeype opoca apye pa oc oeax e oae.

B aecex eoax p pee p o (a ceye peex pepo) oecea aa aypax ce coco ceo pex oox oeo cpae aepa "ye", "xye", "paoa". ooy ax eoax poepec oo paa coacoaoc. B opoao eoe p pee ye c 1 a, o (xi, xj ) P, ec aij 2,...,9, ec aij,...,, o (xj, xi) P, 9 ec aij=1, o (xi, xj ) I. Ta opeeee ooe peoe e pa oeo, oeo, e oecea apay coacoaoc ooe c aoo oeceo ao S(m), o ooy cepy ea opox poope oeax. oecee apa o coacoaoc poeypy poep paoc oo o poa a opao, o oopeeo c paoc poep cey coacoaoc, .e. ocyec poepy aij*ajk=aik.

pee pep poeyp oo cepy p oppoa apoo ooe cpae oeo. opeeeoc aece oeo {x1, x2, x3, x4} paccop eopae ceoe aepa (c.

poee 1-A, e 20, 22, 24, 26).

cxoa apa peeca (aii=1).

Caaa cepy (apep, opee) peaaec cpae pooa apa oeo. Hapep:

1) aoe ee ac oee peoeo. Opeee o pe oeo ae cee peoe.

peoo, o cep oe a opoc cey opao:

ae ceoo 20 ae ooo caoe yepeoe aeoe peocxoco 1 2 2 1 ' Taa oea o oeceo ae S(m) cooecye 4. T.e. a12= a21=1/4. Ta opao, (x1, x2 ) P.

ocpoe paoo aa eoxoa ee oa oea cepa. eaeo, o aa oea caa opo oe c a-o py, ooee peoe epa (x2, xk ) P (x2, xk ) I.

Taa 5. cxoa apa cpae oeo ae ae ae ae 20 22 24 ae ce. 20 1 ae o. 22 1/4 1 ae o. 24 1/5 ae o. 26 ooy cey opoc cepy oppyec a opao, o ycao peoeoc opoo oea o ooe 3-y 4-y.

2) aoe e peoeee x2 x3.

ae peaaec oe cee aoo peoe, a o o ceao 1-o opoce.

aoc peocxo coe co paa ooe oe peoo, cep opee (x2, x3) P o eo oey a23= (oea a23 cooecya e a32 ee cep eo a. 3.1.).

B o cyae oo ycao paoe aae: (x1, x2 ) P (x2, x3) P ceye (x1, x3) P. pe, apao co acoaoc a12*a23 oo pao a13. Ta a a12=4, a23=5, o a oo pao 20, o a a aa 9-aa, o o cepa xo poe coacoaoc ceye oa oey xo y 9. op ao pacpocpaee opa pocxo e oo, a a oo peopeeo ocyce oo oeax cepa, c c e o a apye oee peoeoc. B aecex eo ax apye oecex oeax p pao aa e pocxo, a a x ceo coyec p.

ea opaoo paoo aa cepy pe aaec opoc: aoe e peoeee x1 x3.

Ec oye oe coaae c pa aae (x1, x3) P, o caec, o poepa oepa paoc oye o o cepa opa. Ec eec pacxoee, o peoeyec epecope peye oe cpa oo o oye.

pee ae opoc cepa c yaae oe o oeceo ae.

3) aoe e peoeee x1 x3. Oe: x1, a13=6. (Ce p eo ae 3.2. oee pae po oeo). Taa oea yoeope a pao coacoaoc, a apa o.

o opee a14, epepac ce ooe ye ee ooee ap oeo, oe cpae oopx oo apaee ce a o o oee a14 (a12 ;

a24), (a13;

a34). a yeaec, ae oe ee ooc e coppoa, .e. oea a14 peye oe ee e peopee aoe-o ooee. ooy oe peaaec cao coeo pa caoy cepy.

Taa 5. aoeoe apoe ooee cpae aepa ae 20 ae 22 ae 24 ae ae 20 1 4 6 ae 22 1/4 1 5 ae 24 1/6 1/5 1 ae 26 1/7 1/3 1/3 4) aoe e peoeee x1 x4. Oe: x1, a14=7.

5) aoe e peoeee x2 x4.

opeee eea a24 eoxoo paccope ap eeo a21 a14, a23 a34. Ta a ee a34 ee e opeee, o yae o o a21=1/4 a14=7. o a ae paoe aae ocyec eooo, o peo, ya cpeee apao coacoaoc, oo opee aee a24=a21*a14=7/4, .e. 1

peoo, o cep oe a24=3;

aa oea a o, oopa oaac.

6) aoe e peoeee x3 x4.

Opee ee a34 ooo oa eeo: (a31;

a14), (a32;

a24). Oe oa e ooa opee opoy coaco aoc, o ooceo apao coacoaoc oo cea o o peo paece eea a34 cpeey apeeco y (a31*a14+a32*a24)/2=((1/6)*7+0,5*3)/2 1,91.

Oe cepa a34=3 ec pee.

Ooee coacoaoc ao ap pao 12%. o eo ye ceye oee cpoo pepac coeo o oppoa coacoaoo ooe.

poee ay poeypy ee pa c e oye oee coaco aoo ooe.

yc a12=4, a23=5. Toa a13 oo o 9. Peoeyec oea 8, 9. peoo cep e cae y opee peo eoc oeo 9 pepaec e, o a13=8. aee a14= aoec ca cepo. oaoo opeee a24 ycao ce ooe oa, e a ay oey: (a21;

a14), (a23;

a34). a21*a14=1/4*9<2. Ec cep peaae oey 3, a o o ep pa, o ey ye peoeoao oe a24=2. opeee a paccop (a31;

a14), (a32;

a24). a34=1/8*9+1/5*2<2. cepy peoeyec pa oey 1 2. peoo, o cep oeae peyeco x3 o cpae c x4 oeo 2. Ta aoea apa ee ooee coacoaoc OC=9%.

x1 x2 x3 x x1 1 4 8 x2 1/4 1 5 x3 1/8 1/5 1 x4 1/9 1/2 opaye poeypy ocpoe coacoaoo ooe c ye o opoo pao coacoaoc oao opaa e aoe apoo ooe oea cepo.

Tpeyec coppoa apoe ooee R aoe, o : XxX S(m). X = {x1,..., xn}. aij = (xi, xj ) oea peoeo R R c oea xi o ooe oey xj.

cxoa apa ocpoe aoo ooe Anxn aa, o aii = 1, i = 1,.., n.

1. cepo cpaac x1 x2;

eaec o o peoeo c oeo oppyec oea a12: (x1, x2 ) P (a12>1), (x2, x1) P (a12<1), (x1, x2 ) I ( a12=1).

2. Aaoo .1. cepo cpaac x2 x3.

3. peopeeec oea a'13.

Ec ooo, o oec paoe aae (c. (1), (2)) eaec o o o, o (x1, x3) P (x1, x3) I.

Opeeec oea a'13 coaco peoa apao coaco aoc: a'13=a12*a23.

4. cepo cpaac x1 x3;

eaec o o peoeo c oeo oppyec oea a13: (x1, x2 ) P (a13>1), (x2, x1) P (a13<1), (x1, x3) I ( a13=1).

p o cpaaec peoeoc oeo x1 x3, ocpoe a a ocoe paoo aa opeeea cepo. ae cpaaec a'13 a13. B cyae apye pao apao coacoaoc cepy peec peoae epecopa cye.

p o, ec a'13 >9 a'13 <1/9, o cepy peaaec oe pe oeoc oea x1 ooceo x3 a opao, o a13 o o 9 1/9 cooeceo.

5. cepo cpaac x3 x4 (c. .1).

6. Ec ooo, o oec paoe aae ooc eo ap (x2, x4) ap (x1, x4). Opeeec oea a'24 = a23 * a34 (c.

.3) oea a'14 = (a12 * a24 + a13 * a34 ) / 2. .., aaoo .4.

Cxeao oceoaeoc opoca cepa oo peca a pc. 5.3. Cpea a cxee yaaa oceoaeoc pee c epy opoco apoo cpae. Cep eo oee e, oe oopx oppye cep. Bpyx eax oe oy cop poa a ocoe paoo aa (cpe c oc Tp.). Taa oceoaeoc opoca ec aoee oao o oecy oox poepo oeo cepo a ocoe paoo aa.

x1 x2 x3 x4 xj xn x Tp Tp x Tp x x4 Tp xi xn Pc 5.3. Cxea oceoaeoc pee apx cpae cepy Ta opao, cep caocoeo oppye oe (o e o y peopeee) aij, e j = i + 1 i = 1,...,n.

oce ao oe aij pooc paoe aae pacpo cpaee opa o peoeoc oeo a oe als,l = i - 1,i - 2,...,1;

s = j. Ha ocoe cpee apao coaco n * aps alp p= aoc als opeeec o opye als = p < s, p l, e m m oeco cypyex ap oeo (yac oo e ap alp, aps, oope ye coppoa alp,aps 0 ). coe p

aee opa o peoeoc coppoae oe cpaac c oye o cepa, p eoxooc coa po cxo opaee cepy epecopa oeo.

Aop ocpoe coacoaoo ooe pee a pc. 5.4.

Haao oppoae cxoo oe a12 (i=1, j=2), i=i+1, j=i+1.

Oe cepa (epeopeee) oppoae oe ai j poeypa paoo aa Bo - (xl,xs)P (xl,xs)P (xl,xs)I eoooc oa l=i-1;

s=j n oppoae oe * a alp ps p= als =, p < s, p l ocpoee m peoe l=i-1;

s=j oppoae oeo cepo Oe cepa (xl,xs)P (xl,xs)P l=i-1,i-2,..,1;

s=j (xl,xs)I oppoae cepo oe als epecop He l=i-1;

s=j oe cepo poepa Bo cepa coaae Peoea Oe coa s c oo o paoy He cepy coppoa aa als=a'ls l=i-1;

s=j a epexo ceye oee, oopa e Ooee Anxn He oe oyea a ocoe ocpoeo paoo aa (i=i+1;

j=j+1) a Bcee OC OC ec oyc (<20%) epecop He yoeope cepa oeo cepo a oe Pc 5.4. Aop ocpoe coacoaoo ooe 5.4. Papaoa CP "Bop" a ocoe opoaoo eoa apx ooe CP "Bop" ooe a ocoe opa, oyaeo o c epo P, oy oecee xapaepc peoeo c paccapaex aepa opee cpe x aoee o ae c yeo ooo ca pepe, o oop o cpaac.

Maeaecoe oeceee CP Bop Bop aoee peoex aepa a ocoe opo aoo eoa apx ooe pooc o aopy, opa eoy a pc.5.5.

ep a p pee ocpoee epapx. Haoee pac pocpae epapx p ypaeecx pee o ae. cxou au opoao eoe p pee aoo a epapx c:

- n oeco ypoe epapx (ca epx ypoe y e ca 1-);

- l[i] oeco oeo i-o ypo, i=1,...,n;

pe l[1]=1 e epapx;

- nas[i;

j] aae j-o oea i-o ypo, i=1,...,n, j=1,...,l[i];

- a[i;

j;

k;

m] cee peoe k-o eea i-o ypo e pe m- eeo oo e ypo o ooe j-y eey ecoeo ypo, i=2,..,.n-1;

j=1,...,l[i-1], k=1,...,l[i], m=1,...,l[i]. e eo a[i;

j;

k;

m] oppyc apae ap, oeco oo px a ao ypoe opeeec oeco aepa a e coe ypoe, a oeco cpo coo oeco aepa n- a eye ypoe. Bceo ax ap ye coppoao.

l[i] i= Map oppyc a ocoe apx cpae cepo oe o aoo ypo epapx o ooe aoy oey eco eo ypo. Oe pooc o epao ae (c. pc. 5.1). Bep ae oe aec oece a ocoe a S(m), p o yy oye opaocepe ap.

Ocyecec poepa coacoaoc cye cepo ( cec OC), p eyoeopeo ae OC pooc, o ea cepa oaooe ocpoee coacoaoo ooe a oc oe aopa, ocaoo paee 5.2. (c. pc. 5.4.) o ooaeo coppoao opaocepo ape Anxn pocxo oppoae eeoo ooe ecpooo peoe a ocoe ooopoo oopae pee S(m) peey S, oopoe ocao paee 5.1. poeypa pocxo e yac cepa.

aea aaa aaec opaoe oyex ax y eoa: MA eoo p pee a ae eeo o p ecox .o.., xapaepyex eco oea.

Aop opao .o.. pee paee 5.2.

Aop opao opaocepx ap ocyecec a ocoe oe pa-pya-ypoa eoa aaa epapx, ocax ae 3.

Peymamo ouupoaoo emoa P ec:

1) Beop ooex (oax) popeo aepa caoo eo n-o ypo, yaa a cee peoe cpaaex oeo W=(w1,,wl(n)).

2) Beop ceee eopyeoc aepa n-o ypo, y nd a ce poeyoe ypo (u1,...,ul (n)).

cepy peaaec caoy cpa peya yopoa oecee oaae aoc paccapaex apao pee.

Ec ce ape ooe, oppyee cepo, e co ypoe coacoaoc, o ep eoo, op ye pe oea oa a e aepaa aece aoee oao.

Ec eoope ooe e ecoy cee coacoaoc, o oae aepa, peoeyee ep op eoa, yy pa, o cyae cepy peoeyec ocooac ooe eoo P AP, aop oopoo poc [63].

Meo AP oo P ocyec cpaeec op oo yx ( ecox) aepa a ocoe cecopoeo aeceo o x aaa o oy oecy pepe, opeeex P.

A = ij S( m ) ij ( ) ( ) R k A e k T k = cw, A = e A e k k A W = BW nd = { ( u1 ),..., ( ul( )} n n n n ) nd = {,..., } R21 1 l( 2 ) nd nd nd ui* |ui* arg max( w( ui )) ( ui ) = min{ ( ui );

( ui )} P Q arg max( 2k nd( ui )) Pc Cxea opoaoo aopa apx ooe Haaee ocoe y CP Bop CP "Bop" peaaea pee pooo acca aa, o ax poecce apoa ypae poe pepe.

Cucmea nooem peum, anpuep, ceyue aau:

Aa pa ca poy Ocyecec aa eoo cya a pe poo po y pep, opeeec ee e a oe oa aaoo poy peo oyppy pep.

aaa ae ce poo ocao poy pep e ee peo o pep a ecx pax, a ae poo e a poy a ocoe oycx e pep ecyx apo.

poe oo, peycapaec oppoae poox oeo o ey aec oaae: ocaa poy peo, cpa ea xapaepca e o peoa, aa ee oycx peoax e.

Oea peaeoc oyaee. Pe oyaee Oea peaeoc oyaee ooe oee oocoao coca ey epce a ocao poo poy.

poe oo, cooae xapaepc peaeoc oyaee (aea ca, acooe ooee) oae ocoepoc poopoa oeo ocye acox pecypco pax opax (eee cpeca, ece, aoae ..).

Opeeee oao pooceo popa eoo o Ha ocoe opa, oyaeo aa Aa pa ca, xapaepc poocex ooce oox exooecx cxe, oeo apyeoo epepaoe cp a ao ae, op pyc peoea o pooceo popae eoo oe.

B aece eeo ycao paec aca oxoo pep (oo pye eee ycao).

acoo-ooeca oea ecox poeo Ha ocoe aa oo poo apae pace xapaep c ecox poeo p pax coeax aopo ypax oec (e, p, aooooee ..).

Ccea oeceae:

- ocy a oepao oeoc pep;

- peee aeapo-oopxc P;

- o xpaee cepo opa, ocae cpyypy peoe a, paeo peee;

- peee aa opa ayx apao a ocoe opo aoo eoa p pee, opepoaoo a aecey opa cepo;

- oooc ooe a oee eoo eoa P;

- oopee peyao paceo e aopa paoopax a x paecx oeo, popae cpeca oecea o ooc yaoo cpae peyao, oyex p pax ce apx.

Ccea oaae coco yepcaoc oa oe aa poaa pee pax aa ypae. co ao aaa c oeceee ocya a, a ae papaoa o ccey eoo cpae aepa.

popa poy "Bop" paoae o ypaee oepao o cce Windows95.

popaoe oeceee CP Bop popa poy ae ce oy, opaee a pc.

pc.5.6.

aa ax coco a ax cepo opa, a ax opex ceape aa p pee, a ax pe yao.

aa ax cepo opa peaaea xpae oe o cepo, oyex p aae poex cya ypae apoa eeoc poeoo pep. aa ax pe yao P ooe oya oece oe o yopoa aepa a poee epo pee. aa ax ceape o pex P xpa eoxo aop pepe aepa aa a oopxc poex cya;

aa aa ceape ooe ea pyo pao cepo o aay aeapo oopxc P. Booo aoece a ax CP "B op" c xpae ax oepao oeoc pep. Xpa e ax coco ax paaox cce, ocoax a pax C, ax ax ecox poeccopo, yxaep cx, paox cce.

Moy epaoo aoec c ooaee opao ae paoy oepaopa aooo, coeye pee. eec oo oc acpo epao a, cece ep oopo o cooecoa cee peaeo aa.

cep, oeae poecce aoa a opoc cce, oy, cy pax p, opypoa poopee cye. oo cepa oy coacoae oe aaa oy oep oppoa epoopex cye.

aa oee Moy pa eco eoo p eppea Oepaop pee oy ex peyao Moy epaoo aoec c cepo ooaee opa ceape peyao (a ocoe opex P aa-poaxc P Moy oep P) oppoa epoope x aa ax cye Xpae ax oepao o eoc pep Pc 5.6. Cpyypa popaoo oecee CP "Bop" Opaoy oyeo opa ocyec aop a oee eoo p pee. B ay xo cocae o poaoo aopa: aop oye opaocepx ap .o.. o aece cye cepo, aop ce a oo coceoo eopa ooeo ap o eopee eppoa poeyca, aop epapxecoo cea, aop ce eo pa ceee eopyeoc .o.., aop cep .o.. ooypo eo epapx, aop eoa AP.

Peya, oyee p aae poeo cya, oppyc e oea, a cpeca oy paeco eppea peyao peoc ac paeco e ac oepaopy. ae oea ocya peyao P.

aa o cooa cce Ocou manau paom P c cucmeo mc:

- opeeee e pao c cceo (peee oo, ee e cpyyppoao aa, peee oo aa, pocop oeo o pey P);

- opeeee cyecex ax (ae eo ae xpa a cooa p pee ao aa);

- opeeee apao pee (aepa) pepe cpae a epa;

- aae aecex a oaaee ( ao P oy coppoa aecee a cooec co ceo P);

- ee peoe cepa aepa a oece pepe xoe opoca;

- aa peyao pee oo epexo oe ooo peyx ao.

Paeeue mpya ey P u cnepmau. epe a aa ope eee epe aepa P poo caocoeo, p opeee pepe cpae aepa ooo opaee a oo cepa. oppoae aecex a pooc cepa P coeco. Bee peoe cepo e oo copoo ac a eaeca P. Aa peyao pee po oc caaa P, ae ooo opaee oo cepo a oocoae oyex peyao.

Bauoecmue nooame c CP "Bop" opaoao a opao, o ao c oepaopo poxo aoee yoo o o ope.

Peaoa ceyx oooc:

- opo xoo opa a ee pocex oo;

- epexo aoooo pea ae (oooc pao c aoo xoo opae);

- aoooe aoece ee opae (c "ca" ac opae);

- paoa c pao opae o cpaaex oeax (o eceo, aeceo);

- coxpaee poeyoo opa;

- cpoee cpeca oye ooaee paoe c cceo;

- oppe epe aepa, pepe, ee apoa ..;

- opa a eoxooe co ao aa, epecop pex oeo, eee oceoaeoc oex ao pee ..

Ccea peye peapeoo oye aaa ooae ccee, ac o a ooae xapaepc ce po epyeoo oea, aae oooce cce cyeo aoex ee ao po oa.

Onucaue paom npopa.

Paccop oceoaeoc ec oepaopa p paoe c CP "Bop" c e aaa P, oopo e ceape. Tao aae cooecye y e oc pee Cpaee aepa.

Paoa popa opaoaa e acepa, ooaeo oepaopy o a opoaoo eoa p pee ycox eopeeeoc yo oceoaeoc (c.pc.5.7).

Baae aoa oepaopy peoeyec coxpa a aCoxpa;

poecce aoa ocyec poeyoe coxpae aa.

ep a ocpoee epapx poecca p pee, a o ae ooae yaae oeco ypoe epapx (1), o eco aepa a ao ypoe (2), o aa oeo a oo ypo epapx (3). oce oo aeaecoe ocpoee epapx pooc aoaec.

Bopo a oppoae cye cepo o aece aa. o ao ape cpaaex oeo aoo ypo epapx peaaec opee cee peoeoc oo oo oe a (4).

Booo eocpeceoe aoee ap apx cpae oece a. Map apx cpae aoaec oppyc a peece ooe, oope yoeop ce eo apoe (5). peycopea oppe oeo coaco opa e a.

oce oppoa ap apx cpae (a a ocoe ae cex, a oecex ax) oe aoaec c eo ooee coacoaoc, ec coacoaoc, aoe coc eoe aee (6). Bcooe ooee coacoaoc (oee 20%) oa ae a eoxooc epecope cye. B o cyae ooo ocooac ooo ocpoe coacoax cye.

(1) (2) (3) (4) (5) (6) (7) Pc 5.7. ooaec epec CP "Bop" o ooa aoa c oepaopo pooc cee ae popeo paccapaex aepa x papoae (7) eo o MA eoo p pee a ae eeo o. Peya pao popa oy oye ae e oea (ecooo aa) paeco ope. p oye pax peyao pa poa eooax ooae ooo cpaee yx aoee peoex aepa eoo AP (apa oeca aepa).

aee Bao cocae ooeco caoc poex pep ec coepecoae ypae, o ce pe ee pee aa ypae copeex ooo aeaecx eoo ceo ex. ae epeoe pe p, ee aoee apoa ypaeec epcoa, acoee pe e pao opaoo-ypae cce cex ee occe e coco yoeop copee po ooe.

Papaoa epee oepo oep p pee opaoo-ypae cce poex pep po eoxooc coa aeaecx oee p pee, oox oeco cecopoe aapoa poee cya opeo peeo oac, xapaepe cox pooc ex cce. Peee poe opoa poecco ypae pooco peye papao oee, aeao yax coo yoe e ooo oeca aopo a ypaeece pee.

Aa, pae papaoa oee p pee C poex pep oo oee yceo pea poey ypae a oea yye x poocex oaa ee. B oopa paccope ceye opoc:

1. poeeo cecopoee cpaeoe cceoae px e oo P ycox eopeeeoc: eoa aaa epapx, eoo P a ae eeo o, aecex eoo p pee.

2. peoe eo ce eopa ceee eopyeoc aepa cpaaex oeo ooypoeo epapx, apy c a oepax opao eex cxox ax c cooa e poeyp oye cep ecox eex ooe ecpooo peoe, xapaepyex eco oea.

3. Papaoaa poeypa ocpoe coacoaoo apoo oo e cpaaex oeo a ocoe a apao, a pa o coacoaoc, aaa oopo aaec oaa oo cepy p oye poopex cye.

4. Peaoaa oooc oppoa opaocepx a p MA oppoae eex ooe ecpooo peoe o aece cye cepo o peoeoc cpaaex oeo a ocoe ooopa oecex a.

5. Ha ocoe poeeoo cceoa peoe opoa aop p pee ycox eopeeeoc, peaae C poeoo pep, opaa cey ypa eecx pee.

6. poeea popaa peaa paeca apoa oepo oep p pee ycox eopeeeoc, ao eoo oopo ec opoa eo p pe e.

opaec cco 1. Aepa M.A., Aecepo .T. Bop apao (oco eop).

M.: Haya, 1990. 236 c.

2. Ao, Pacce . cycco pee poe. M.: Mp, 1982. 220 c.

3. Ayae aa eop aecx cce ypae: C. ay.

c. / AH CCP, - aea / o pe. P. aacoa p.

Mc: Haya exa, 1989. 332 c.

4. Aecepo .T., Opey. Bop. oocoae. ap. M.:

Academia, 1995. 210 c.

5. Aa eppea pocpaceo-pacpeeex cpyyp: C.

ay. p. / AH CCP, pa. Cepoc, 1988. 79 c.

6. Aepo E.. Meo oa x poee. Hoocpc:

Haya, 1990. 160 c.

7. ae .., aoo .E. Moopepa op c yeo yax peoe. H.-Hoopo, 1994. 86 c.

8. e A.P., e M.. pe pee: oaope oe apoca opa. M.: Haya, 1990. 160 c.

9. ea P. Beee eop ap. M.: Haya, 1969. 368 c.

10. ee .C. Peee cox oaox aa ycox eo peeeoc. Hoocpc: Haya, 1978. 126 c.

11. Moopepaa oa: aeaece ace / .A. epeoc, .M. apo, B.. oeo, .M. eep.

M.: Haya, 1989. 230 c.

12. epeoc .A., e A.B. aaa ayeo opa. M.: Haya, 1984. 196 c.

13. Ccea oep p cpaeecx pee ACTPA / .

ep, O.. ape, E.M. Moo,. Xpc // poe eo p yax oopxc pee. M.:

BHC, 1990. C. 9-25.

14. eep ., oa P. Paoa oe op // B pe ay . 1983. 10. C. 57-65.

15. C.., yoa .A. peee eoo eop p pe e papoa oaaee ypo pa oeo // Te.

o. opecca HPM-98. Hoocpc, 1998 C. 110 111.

16. C.., Capae.B., yoa .A. ooee ap aaax p pee // Hoe exoo opaoa: Te.

o. I Pecy. epoo ay. o. Bopoe: B, 1999.

C. 44-45.

17. C.., yoa .A. Beee aeaece eo p pee: eoe ocoe. e: , 1999. 104 c.

18. C.., yoa .A. Opaee coo pacpeeeo cc e cpyype aa p pee o cce // Maea a. oep. Opaoae: Te. o. VII eyap. o.

ya, 2000. C. 52.

19. C.., yoa .A. Oea ypo pa oea c o pe aa p pee // Opaoaee exoo:

Meyoc c. ay. p. Bopoe: B, 1998. C. 77-80.

20. C.., yoa .A. Cpaee pax eo ce eopa popeo eoe aaa epapx // Opaoaee ex oo: Meyoc c. ay. p. Bopoe: B, 1999. C. 172 176.

21. C.., yoa .A. Cpaee peyao p pee pa eoa a ae eeo o // opaoe ex oo poecce ooo copeeoo ceaca: Meyo c c. e: , 1999. C. 10-12.

22. C.., yoa .A. ea popaa ceypca Beee aeaece eo p pee // Meoece poe ypce aea. Byc 3. e: , 1999. C. 12-14.

23. opco A.H. Moe p pee a ocoe ceco epeeo. Pa: ae, 1982. 156 c.

24. opco A.H. Opaoa eeo opa cceax p pee. M.: Pao c, 1989. 181 c.

25. opco A.H., Bc .P., Cyyp .. aooe cce p pee a ae -BM: opaooe, aeaecoe po paoe oeceee. Pa: ae, 1986. 195 c.

26. opco A.H., pyep O.A., eopo .. pe pee a oco e eex oee. pep oee. Pa: ae, 1990.

184 c.

27. B B.A., eopo B.B. Maeaece eo aoapoao o poepoa: e. ocoe yo. M.: Bc.., 1989. 184 c.

28. Baep. cceoae oepa. M.: Mp, 1972. T. 1-3. 335 c., c., 501 c.

29. Bac .., Maac E. Pee: eop, opa, oepoa e. M.: Pao c, 1981. 328 c.

30. Bopoc epe. cepe oe / o o. pe.

.. aa, .H. Tpa. M.: Haya, 1977. 198 c.

31. Bo A.. Oa ycox eopeeeoc. M.: -o M;

Co: Texa, 1989. 224 c.

32. Bcee cce opoc p pee: C. c. / o pe. .H. opoea. M.: -o M, 1991. 213 c.

33. aaxep .P. Teop ap. M.: Haya, 1967. 576 c.

34. a .X., eo H.. cpee cpeae aa p pee: e. ocoe. Hoocpc, H, 1991. 75 c.

35. poeypa ocpoe aopa a oece oopepax aepa a ocoe ocoepo opa o peoex a, paeo pee / .C. eeo, O.. ape, E.M. Moo, E.M. ypec // AT. 1986. 9. C. 104-113.

36. peo A.A. a p ayee peee peax ycox M.: Pao c, 1991. 320 c.

37. pya.C. Peee oopepax aa oa yco x eopeeeoc a ocoe eoa aaa epapx eop e ex oec: cc. a cocae cee a. ex. ay.

Moca: Mococ ocyapce yepce . ayaa, 1998.

155 c.

38. p M., oco . Bcee a pyopeaee aa . M.: Mp, 1982. 416 c.

39. eopa .C., Heeo .M., cceoae oepa apoa ypae. e: Ba ., 1991. 270 c.

40. oe A. Cce oaoo ypae: Boye, pe aa yceoc. M.: Mp, 1987. 156 c.

41. oco B.., aa A.. cpee oe p pee p eoo opa. Cepoo: Tap, 1992. 165 c.

42. oppep M.. yoe pecaae epoce aoooe pye // Meo epoopa: C. ay. pyo / o pe.

A.H. opa. pacopc, 1998. C.111-127.

43. yo .A., Tpa C.. Moopepae oe oppoa opa apao cce. M.: Haya, 1986. 294 c.

44. . Meo apx cpae. M.: Caca, 1978. 144 c.

Pages:     | 1 || 3 |



2011 www.dissers.ru -

, .
, , , , 1-2 .