WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 | 2 || 4 | 5 |

«РАЛЬФ ВИНС Математика управления капиталом Методы анализа риска для трейдеров и портфельных менеджеров Оглавление Посвящение Введение Обзор книги Некоторые распространенные ложные концепции Сценарии и ...»

-- [ Страница 3 ] --

Рисунок 3-10 2-хвостая вероятность события между +2 и -2 сигма Рисунок 3-11 2-хвостая вероятность события, находящегося вне 2 сигма Допустим, нам надо найти площадь под кривой N'(Z) между -1 стандартной еди ницей и +2 стандартными единицами. Есть два способа расчета. Мы можем рассчитать вероятность, не превышающую +2 стандартные единицы, при помощи уравнения (3.21) и вычесть вероятность, не превышающую -1 стандартную единицу (см. рисунок 3-12). Это даст нам:

0,9772499478 - 0,1586552595 = 0, Рисунок 3-12 Площадь между -1 и +2 стандартными единицами Другой способ: из единицы, представляющей всю площадь под кривой, надо вы честь вероятность, не превышающую -1 стандартную единицу, и вероятность, превышающую 2 стандартные единицы:

= 1 - (0,022750052 + 0,1586552595) = 1 -0,1814053117 =0, С помощью рассмотренных в этой главе математических подходов вы сможете рассчитывать любые вероятности событий для случайных процессов, имеющих нормальное распределение.

Последующие производные нормального распределения Иногда требуется знать вторую производную функции N(Z). Так как функция N(Z) дает нам значение площади под кривой при Z, а функция N'(Z) дает нам высоту самой кривой при значении Z, тогда функция N"(Z) дает нам мгновенный наклон (instantaneous slope) кривой при данном значении Z:

где ЕХР() = экспоненциальная функция.

Найдем наклон кривой N'(Z) при +2 стандартных отклонениях:

N"(Z) = -2 I 2,506628274 * ЕХР(-(+2^ 2) / 2) = -2 / 2,506628274 * ЕХР(-2) = -2 / 2,506628274 * 0,1353353 =-0, Теперь мы знаем, что мгновенная скорость изменения функции N'(Z) при Z = + равна-0,1079968336. Это означает повышение/понижение за период, поэтому, когда Z = +2, кривая N'(Z) повышается на -0,1079968336. Эта ситуация показана на рисунке 3-13.

Последующие производные даются далее для справки. Они не будут использо ваться в оставшейся части книги и представлены для полноты освещения темы:

В качестве последнего дополнения к сказанному о нормальном распределении стоит заметить, что на самом деле это распределение не такое остроконечное, как на графиках, представленных в данной главе. Реальная форма нормального рас пределения показана на рисунке 3-14. Отметьте, что здесь масштабы двух осей одинаковы, в то время как в других графических примерах они отличаются для придания более вытянутой формы.

Логарифмически нормальное распределение Для торговли многие приложения требуют небольшой, но важной модификации нормального распределения.

Рисунок 3-13 N"(Z) дает наклон касательной к N'(Z) при Z = + Рисунок 3-14 Реальная форма нормального распределения С помощью этой модификации нормальное распределение преобразуется в лога рифмически нормальное распределение. Цена любого свободно котируемого инст румента имеет нулевое значение в качестве нижнего предела1. Поэтому когда цена этого инструмента падает и приближается к нулю, то, теоретически, цене инстру мента должно быть все труднее понизиться. Рассмотрим некую акцию стоимостью 10 долларов. Если бы акция упала на 5 долларов до 5 долларов за акцию (50% понижение), то в соответствии с нормальным распределением она может также легко упасть с 5 долларов до 0 долларов. Однако при логарифмически нормальном распределении подобное падение на 50% с цены в 5 долларов за акцию до цены Предположение, что самой низкой ценой, по которой может торговаться инструмент, является ноль, не всегда верно. Например, во время краха фондового рынка в 1929 году и последующего медвежьего рьшка акционеры многих обанкротившихся банков понесли ответственность перед вкладчиками этих банков. Акционеры таких банков не только потеряли инвестированные в акции деньги, но также понесли убытки сверх этого 2,50 долларов за акцию будет примерно таким же вероятным, как и падение с долларов до 5 долларов за акцию.

Рисунок 3-15 Нормальное и логарифмически нормальное распределения Логарифмически нормальное распределение, рисунок 3-15, работает точно так же, как и нормальное распределение, за тем исключением, что при логарифмически нормальном распределении мы имеем дело с процентными изменениями, а не абсолютными. Теперь рассмотрим движение вверх. В соответствии с логарифмически нормальным распределением движение с 10 долларов за акцию до 20 долларов за акцию аналогично движению с 5 долларов до 10 долларов за акцию, так как оба эти движения представляют повышение на 100%. Это не означает, что мы не будем использовать нормальное распределение. Мы просто познакомимся с логарифмически нормальным распределением, покажем его отличие от нормального (логарифмически нормальное распределение использует процентные, а не абсолютные изменения цены) и увидим, что обычно именно оно используется при обсуждении ценовых движений или в том случае, когда нормальное распределение ограничено снизу нулем. Для использования логарифмически нормального распределения необходимо преобразовывать данные, с которыми вы работаете, в натуральные логарифмы1.

Преобразованные данные будут нормально распределяться, если необработан ные данные распределялись логарифмически нормально. Если мы рассматриваем распределение изменений цены и оно логарифмически нормальное, то можно ис пользовать нормальное распределение. Сначала мы должны разделить каждую цену закрытия на предыдущую цену закрытия. Допустим, мы рассматриваем распределение ежемесячных цен закрытия (можно использовать любой временной период: часовой, дневной, годовой и т.д.). Предположим, цены закрытия последних пяти месяцев — 10 долларов, 5 долларов, 10 долларов, 10 долларов и Различие между десятичным и натуральным логарифмом следующее. Десятичный логарифм — это логарифм, который имеет в основании 10, в то время как натуральный логарифм имеет в основании число е, где е = 2,7182818285. Десятичный логарифм Х математически обозначается log(X), в то время как натуральный логарифм обозначается 1п(Х). Натуральный логарифм может быть преобразован в десятичный путем умножения натурального логарифма на 0,4342917. Таким же образом мы можем преобразовать десятичный логарифм в натуральный путем умножения десятичного логарифма на 2,3026.

долларов. Это соответствует понижению на 50% во втором месяце, повышению на 100% в третьем месяце, повышению на 0% в четвертом месяце и повышению на 100% в пятом месяце. Соответственно мы получим частные 0,5;

2;

1 и 2 по ежемесячным изменениям цен со второго по пятый месяцы. Это то же, что и HPR нашей последовательности. Теперь мы должны преобразовать их в натуральные логарифмы, чтобы изучить полученное распределение на основе математического аппарата нормального распределения. Таким образом, натуральный логарифм 0, равен -0,6931473, ln(2) =0,6931471 и ln(1) = 0. Теперь к распределению этих преобразованных данных мы можем применять математические методы, относящиеся к нормальному распределению.

Параметрическое оптимальное f Мы немного познакомились с математикой нормального и логарифмически нор мального распределения и теперь посмотрим, как находить оптимальное f по нормально распределенным результатам. Формула Келли является примером параметрического оптимального f, где f является функцией двух параметров. В формуле Келли вводные параметры — это процент выигрышных ставок и отношение выигрыша к проигрышу. Однако формула Келли даст вам оптимальное f только тогда, когда возможные результаты имеют бернуллиево распределение.

Другими словами, формула Келли даст правильное оптимальное f, когда есть только два возможных результата, в противном случае, как, например, в нормально распределенных результатах, формула Келли не даст вам правильное оптимальное f2.

Параметрические методы гораздо мощнее эмпирических. Рассмотрим ситуацию, которую можно полностью описать бернуллиевым распределением. Мы можем рассчитать оптимальное f либо из формулы Келли, либо с помощью эмпирического метода. Допустим, мы выигрываем 60% времени. Предположим, мы бросаем несимметричную монету, и при долгой последовательности 60% бросков будут приходиться на лицевую сторону. Поэтому мы каждый раз ставим на то, что монета будет выпадать на лицевую сторону, и выигрыш составляет 1:1.

Из формулы Келли следует, что надо ставить 0,2 нашего счета. Также допустим, что из прошлых 20 бросков 11 выпали лицевой стороной, а 9 обратной. Если бы мы использовали эти 20 сделок в качестве вводных данных для эмпирического метода расчета f, результатом было бы то, что следует рисковать 0,1 нашего счета при каждой следующей ставке. Какое значение правильно, 0,2, полученное параметрическим методом (формула Келли с бернуллиевым распределением), или 0,1, найденное эмпирически на основе 20 последних бросков? Правильным ответом является значение 0,2, найденное с помощью параметрического метода.

Причина в том, что каждый последующий бросок имеет 60% вероятность выпасть лицевой стороной, а не 55% вероятность, что следует из результатов 20 последних бросков. Хотя мы рассматриваем только 5% отклонение в вероятности, то есть бросок из 20, результаты после применения разных значений f будут сильно отличаться. Вообще параметрические методы внутренне более точны, чем эмпирические (при условии, что мы знаем распределение результатов). Это первое преимущество параметрического метода. Самый большой недостаток параметрических методов состоит в том, что мы должны знать, каким Здесь мы говорим о формулах Келли в единственном числе, хотя, фактически, есть две версии формулы Келли: одна для случая, когда отношение выигрыша к проигрышу составляет 1:1, а другая для случая, когда отношение выигрыша к проигрышу произвольно. В этой главе мы исходим из отношения 1:1, поэтому не имеет значения, какую именно формулу Келли мы используем.

распределение результатов будет в течение длительного времени. Второе преимущество состоит в том, что для эмпирического метода требуются исторические данные, в то время как для параметрического в этом нет необхо димости. Кроме того, эта история должна быть довольно протяженной. В только что рассмотренном примере можно предположить, что, если бы у нас была исто рия 50 бросков, мы бы получили эмпирическое оптимальное f ближе к 0,2. При истории 1000 бросков оно было бы еще ближе. Тот факт, что эмпирические методы требуют довольно большого объема исторических данных, свел все их использование к механическим торговым системам. Тот, кто в торговле использует что-либо отличное от механических торговых систем, будь то волны Эллиотта или фундаментальные данные, практически не имеет возможности использовать метод оптимального f. С параметрическими методами дело обстоит иначе. Например, тот, кто желает слепо следовать какому-нибудь рыночному гуру, имеет теперь возможность использовать оптимальное f. В этом состоит третье преимущество параметрического метода — он может использоваться любым трейдером на любом рынке. В том случае, когда не используется механическая торговая система, следует помнить о важном допущении. Оно состоит в том, что будущее распределение прибылей и убытков будет напоминать распределение в прошлом (поэтому мы и рассчитываем оптимальное f), это может оказаться менее вероятным, чем в случае использования механической системы.

Все вышесказанное заставляет по-иному взглянуть на ожидаемую работу любого не полностью механического метода. Даже профессионалы («фундамента-листы», последователи Ганна или Эллиотта и т.п.), использующие такие методы, обречены на неудачу, если они находятся далеко справа от пика кривой f. Если они слишком далеко слева от пика, то получат геометрически более низкие прибыли, чем их опыт и навыки в этой области позволяют. Более того, практики не полностью механических методов должны понимать, что все сказанное об оптимальном f и чисто механических методах будет иметь прямое отношение и к их системам. Это надо учитывать при использовании подобных методов. Помните, что проигрыши могут быть значительными, но это не означает, что метод не следует применять.

Четвертое и, возможно, наибольшее преимущество параметрического метода определения оптимального f состоит в том, что параметрический метод позволяет создавать модели «что если». Например, вы решили торговать по рыночной системе, которая работала достаточно успешно, но хотите подготовиться к ситуа ции, когда эта рыночная система прекратит хорошо работать. Параметрические методы позволяют варьировать ваши вводные параметры для отражения возмож ных изменений, и благодаря этому показать, когда рыночная система прекратит хорошо работать. Еще раз повторюсь: параметрические методы намного мощнее эмпирических.

Зачем вообще использовать эмпирические методы? Они интуитивно более очевидны, чем параметрические. Следовательно, эмпирические методы необ ходимо изучать до перехода к параметрическим. Мы уже достаточно подробно рассмотрели эмпирический подход и поэтому готовы изучать параметрические методы.

Распределение торговых прибылей и убытков (P&L) Рассмотрим следующую последовательность 232 торговых прибылей и убытков в пунктах. Не имеет значения, к какому товару или системе относится этот поток данных — это может быть любая система на любом рынке.

№ сделки P&L № сделки P&L № сделки P&L № сделки P&L 1. 0,18 25. 0,15 49. 0,17 73. 0, 2. -1,11 26. 0,15 50. -1,53 74. 0, 3. 0,42 27. -1,14 51. 0,15 75. 0, 4. -0,83 28. 1,12 52. -0,93 76. 0, 5. 1,42 29. -1,88 53. 0,42 77. 0, 6. 0,42 30. 0,17 54. 2,77 78. 0, 7. -0,99 31. 0,57 55. 8,52 79. 1, 8. 0,87 32. 0,47 56. 2,47 80. 0, 9. 0,92 33. -1,88 57. -2,08 81. 0, 10. -0,4 34. 0,17 58. -1,88 82. -3, 11. -1,48 35. -1,93 59. -1,88 83. -4, 12. 1,87 36. 0,92 60. 1,67 84. -1, 13. 1,37 37. 1,45 61. -1,88 85. -1, 14. -1,48 38. 0,17 62. 3,72 86. 1, 15. -0,21 39. 1,87 63. 2,87 87. 0, 16. 1,82 40. 0,52 64. 2,17 88. 1, 17. 0,15 41. 0,67 65. 1,37 89. -1, 18. 0,32 42. -1,58 66. 1,62 90. 1, 19. -1,18 43. -0,5 67. 0,17 91. -1, 20. -0,43 44. 0,17 68. 0,62 92. 1, 21. 0,42 45. 0,17 69. 0,92 93. 1, 22. 0,57 46. -0,65 70. 0,17 94. 0, 23. 4,72 47. 0,96 71. 1,52 95. 0, 24. 12,42 48. -0,88 72. -1,78 96. -1, Продолжение № сделки P&L № сделки P&L № сделки P&L № сделки P&L 97. 3,22 126. -1,83 155. 0,37 184. 0, 98. -4,83 127. 0,32 156. 0,87 185. 0, 99. 8,42 128. 1,62 157. 1,32 186. 1, 100. -1,58 158. 0,16 187. -1, 101. -1,88 130. 1,02 159. 0,18 188. -0, 102. 1,23 131. -0,81 160. 0,52 189. -1, 103. 1,72 132. -0,74 161. -2,33 190. -0, 104. 1,12 133. 1,09 162. 1,07 191. -0, 105. -0,97 134. -1,13 163. 1,32 192. -1, 106. -1,88 135. 0,52 164. 1,42 193. 0, 107. -1,88 136. 0,18 165. 2,72 194. 1, 108. 1,27 137. 0,18 166. 1,37 195. 2, 109. 0,16 138. 1,47 167. -1,93 196. 0, 110. 1,22 139. -1,07 168. 2,12 197. 0, 111. -0,99 140. -0,98 169. 0,62 198. 0, 112. 1,37 141. 1,07 170. 0,57 199. -0, 113. 0,18 142. -0,88 171. 0,42 200. -0, 114. 0,18 143. -0,51 172. 1,58 201. 0, 115. 2,07 144. 0,57 173. 0,17 202. -0, 116. 1,47 145. 2,07 174. 0,62 203. 0, 117. 4,87 146. 0,55 175. 0,77 204. 0, 118. -1,08 147. 0,42 176. 0,37 205. 0, 119. 1,27 148. 1,42 177. -1,33 206. 1, 120. 0,62 149. 0,97 178. -1,18 207. -1, 121. -1,03 150. 0,62 179. 0,97 208. 0, 122. 1,82 151. 0,32 180. 0,70 209. 0, 123. 0,42 152. 0,67 181. 1,64 210. 1, 124. -2,63 153. 0,77 182. 0,57 211. 1, 125. -0,73 154. 0,67 183. 0,24 212. 0, Продолжение № сделки P&L № сделки P&L № сделки P&L № сделки P&L 213. 0,82 218. 0,25 223. -1,30 228. 1, 214. -0,98 219. 0,14 224. 0,37 229. 2, 215. -0,85 220. 0,79 225. -0,51 230. 0, 216. 0,22 221. -0,55 226. 0,34 231. -1, 217. -1,08 222. 0,32 227. -1,28 232. 1, Если мы хотим определить приведенное параметрическое оптимальное f, нам при дется преобразовать эти торговые прибыли и убытки в процентные повышения и понижения (основываясь на уравнениях с (2.10а) по (2.10в)). Затем мы преобразуем эти процентные прибыли и убытки, умножив их на текущую цену базового инструмента. Например, P&L № 1 составляет 0,18. Допустим, что цена входа в эту сделку была 100,50. Таким образом, процентное повышение по этой сделке будет 0,18/100,50 = 0,001791044776. Теперь предположим, что текущая цена базового инструмента составляет 112,00. Умножив 0,001791044776 на 112,00, мы получаем приведенное P&L = 0,2005970149. Чтобы получить полные приведенные данные, необходимо проделать эту процедуру для всех 232 торговых прибылей и убытков.

Независимо от того, будем мы проводить расчеты, используя приведенные данные, или нет (в этой главе мы не будем использовать приведенные данные), мы все равно должны рассчитать среднее (арифметическое) и стандартное отклонение совокупности этих 232 торговых прибылей и убытков. В нашем случае это 0,330129 и 1,743232 соответственно (если бы мы проводили операции на приве денной основе, нам бы понадобилось определять среднее и стандартное отклоне ние по приведенным торговым P&L). Теперь мы можем использовать уравнение (3.16), чтобы преобразовать каждую отдельную торговую прибыль и убыток в стандартные единицы.

(3.16) Z=(X-U)/S, где U = среднее значение данных;

S = стандартное отклонение данных;

Х = наблюдаемая точка данных.

Для сделки № 1 преобразуем прибыль 0,18 в стандартные единицы:

Z= (0,18-0,330129)/1,743232 =-0,150129/1,743232 =-0, Таким же образом следующие три сделки -1,11;

0,42 и -0,83 преобразовываются в 0,8261258398;

0,05155423948 и -0,6655046488 стандартных единицы. После того, как мы преобразуем все торговые прибыли и убытки в стандартные единицы, можно собрать в ячейки теперь уже нормированные данные. Вспомните, что при наличии ячеек теряется часть информации о распределении (в нашем случае о распределении отдельных сделок), но характер распределения остается тем же.

Допустим, мы помещаем эти 232 сделки в 10 ячеек. Количество ячеек выбрано произвольно — мы могли бы выбрать 9 или 50 ячеек.

Рисунок 3-16 232 сделки в 10 ячейках от -2 до +2 сигмы и нормальное распределение Когда мы размещаем данные в ячейки, то должны выбрать интервал значений, в котором расположены ячейки. Мы выберем интервал от -2 до +2 сигмы. Это оз начает, что у нас будет 10 одинаковых ячеек между -2 стандартными единицами и +2 стандартными единицами. Так как между -2 и +2 4 стандартных единицы и мы делим этот диапазон на 10 равных частей, то получаем 4 / 10 = 0,4 стандартных единицы в качестве размера или «ширины» каждой ячейки. Поэтому наша первая ячейка будет содержать те сделки, которые были в диапазоне от -2 до -1, стандартных единиц, следующая ячейка будет содержать сделки от-1,6 до-1,2, затем от -1,2 до -0,8, и так далее, пока последняя ячейка не вместит сделки между 1,6 и 2 стандартными единицами. В нашем случае те сделки, которые менее – стандартных единиц или больше +2 стандартных единиц, не будут размещены в ячейки, и мы их проигнорируем. Если бы мы пожелали, то включили бы их в крайние ячейки, разместив точки данных менее -2 в ячейку от -2 до -1,6, и таким же образом поступили бы в отношении тех точек данных, которые больше 2. Ко нечно, мы могли бы выбрать более широкий диапазон, но эти сделки находятся за пределами выбранных ячеек, и мы их не учитываем. Другими словами, мы не рас сматриваем сделки, P&L в которых меньше, чем 0,330129 - (1,743232 * 2) = = 3,1563, или больше, чем 0,330129 + (1,743232 * 2) = 3,816593. Мы сейчас создали распределение торговых P&L системы. Распределение содержит 10 точек данных, так как мы решили работать с 10 ячейками. Каждая точка данных отражает число сделок, которые попадают в эту ячейку Каждая сделка не может попасть более чем в 1 ячейку и если сделка находится за пределами 2 стандартных единиц с любой стороны среднего (P&L < -3,156335 или > 3,816593), тогда она не будет пред ставлена в этом распределении. Рисунок 3-16 показывает распределение, которое мы только что рассчитали. Может показаться, что распределение P&L торговой системы должно всегда быть смещено вправо за счет больших выигрышей. Наше распределение 232 торговых P&L представляет систему, которая в основном приносит небольшие прибыли. Многие трейдеры имеют ошибочное мнение, что распределение P&L должно быть смещено вправо для всех торговых систем. Это не всегда верно, что и подтверждает рисунок 3-16. Разные рыночные системы имеют различные распределения, и вам не следует ожидать, что все они будут одинаковыми. Также на рисунке 3-16 показано нормальное распределение для торговых P&L, если бы они были нормально распределены. Это было сделано для того, чтобы вы могли графически сравнить торговые P&L для полученного и нормального распределения. Сначала нормальное распределение рассчитывается для границ каждой ячейки. Для самой левой ячейки это Z =-2 и Z=-1,6. Теперь подставим полученные значения Z в уравнение (3.21), чтобы рассчитать вероятность. В нашем примере это соответствует 0,02275 для Z = -2 и 0, для Z = -1,6. Затем возьмем абсолютное значение разности этих двух значений, которое в нашем примере будет ABS(0,02275 - 0,05479932) = = 0,03204932. Затем умножим полученный ответ на количество точек данных, то есть на 232 (мы все еще должны использовать 232 сделки, хотя некоторые исключаются, так как находятся вне диапазона выбранных ячеек). Таким образом, если бы данные были нормально распределены и размещены в 10 ячеек равной ширины между -2 и + сигма, тогда самая левая ячейка содержала бы 0,03204932 * 232 = 7, элемента. Если сделать расчет для каждой из 10 ячеек, мы получим нормальную кривую, показанную на рисунке 3-16.

Поиск оптимального f пo нормальному распределению Сейчас мы разработаем метод поиска оптимального f по нормально распреде ленным данным. Как и формула Келли, это способ относится к параметрическим методам. Однако он намного мощнее, так как формула Келли отражает только два возможных результата события, а этот метод позволяет получить полный спектр результатов (при условии, что результаты нормально распределены). Удобство нормально распределенных результатов (кроме того факта, что в реальности они часто являются пределом многих других распределений) состоит в том, что их можно описать двумя параметрами. Формулы Келли дадут вам оптимальное f для бернуллиевых результатов, если известны два параметра: отношение выигрыша к проигрышу и вероятность выигрыша. Метод расчета оптимального f, о котором мы сейчас расскажем, также требует только два параметра — среднее значение и стандартное отклонение результатов. Вспомним, что нормальное распределение является непрерывным распределением. Для того, чтобы использовать этот метод, необходимо дискретное распределение. Далее вспомним, что нормальное распределение является неограниченным распределением. Первые два шага, которые мы должны сделать для нахождения оптимального f по нормально распределенным данным, — это определить, (1) на сколько сигма от среднего значения мы усекаем распределение и (2) на сколько равноотстоящих точек данных мы разделим интервал между двумя крайними точками, найденными в (1).

Например, мы знаем, что 99,73% всех точек данных находятся между плюс и минус 3 сигма от среднего, поэтому можно использовать 3 сигма в качестве пара метра для (1). Другими словами, мы рассматриваем нормальное распределение только между минус 3 сигма и плюс 3 сигма от среднего значения. Таким образом, мы охватываем 99,73% всей активности в пределах нормального распределения.

Вообще, для этого параметра лучше использовать значение от 3 до 5 сигма. Что касается числа равноотстоящих точек данных (шаг 2), мы будем использовать число, как минимум, в десять раз большее количества стандартных отклонений, которое используется в (1). Если мы выберем 3 сигма для (1), тогда возьмем, по крайней мере, 30 равноотстоящих точек данных для (2). Это означает, что на горизонтальной оси следует отметить отрезок от минус 3 сигма до плюс 3 сигма и нанести на нем 30 равноотстоящих точек. Так как между минус 3 сигма и плюс сигма находится 6 сигма и нам надо разместить на этом отрезке 30 равноотстоя щих точек, мы должны разделить 6 на 30 - 1, или 29. Это даст нам 0,2068965517.

Первой точкой данных будет минус 3. Затем мы будем добавлять 0,2068965517 к каждой предыдущей точке, пока не достигнем плюс 3. И так нанесем 30 равноот стоящих точек данных между минус 3 и плюс 3. Нашей второй точкой данных бу дет -3 + 0,2068965517 =-2,793103448, третьей точкой данных будет 2,79310344 + 0,2068965517 = -2,586206896, и так далее. Таким образом, мы зададим 30 точек на горизонтальной оси. Чем больше точек данных вы используете, тем лучше будет разрешение нормальной кривой. Использование количества точек в десять раз больше числа стандартных отклонений не является строгим правилом определения минимального числа точек данных. Нормальное распределение является не прерывным распределением. Однако мы должны сделать его дискретным, чтобы по нему найти оптимальное f. Чем большее число равноотстоящих точек данных мы используем, тем ближе наша дискретная модель будет к реальному непрерывному распределению. Почему не следует использовать слишком большое число точек данных? Чем больше точек данных вы будете использовать в нормальной кривой, тем больше времени понадобится для поиска оптимального f.

Даже если вы будете использовать компьютер для поиска оптимального f, при большом количестве точек данных расчет займет достаточно много времени.

Более того, каждая дополнительная точка данных увеличивает разрешение в меньшей степени, чем предыдущая точка. Мы будем называть описанные выше два вводных параметра ограничивающими параметрами (bounding parameters).

Третий и четвертый шаги позволят определить среднюю арифметическую сделку и стандартное отклонение для рыночной системы, с которой вы работаете. Если у вас нет механической системы, можно получить эти числа из брокерских отчетов.

Один из реальных плюсов рассматриваемого метода состоит в том, что для его использования не обязательно работать по механической системе, вам даже не нужны брокерские отчеты или торговые результаты в бумажной форме. Метод можно использовать, рассчитав два вводных параметра: среднюю арифметическую сделку (в пунктах или долларах) и стандартное отклонение сделок (в пунктах или долларах, в зависимости от того, что вы используете для средней арифметической сделки). Если стандартное отклонение сложно рассчитать, тогда просто попытайтесь понять, насколько, в среднем, сделка будет отличаться от средней сделки. Рассчитав среднее абсолютное отклонение, вы можете использовать уравнение (3.18) для преобразования оценочного среднего абсолютного отклонения в оценочное стандартное отклонение:

(3.18) S=M* 1/0, =М* 1,253314137, где S = стандартное отклонение;

М = среднее абсолютное отклонение.

Эти два параметра, среднее арифметическое средней сделки и стандартное откло нение сделок, мы будем называть действительными вводными параметрами.

Теперь нам надо взять все равноотстоящие точки данных из шага (2) и найти их соответствующие ценовые значения, основываясь на среднем арифметическом значении и стандартном отклонении. Вспомним, что наши равноотстоящие точки данных выражены в стандартных единицах. Теперь для каждой из этих равно отстоящих точек данных мы найдем соответствующую цену:

(3.27) D = U + (S * Е), где D = ценовое значение, соответствующее значению стандартной единицы;

Е = значение стандартной единицы;

S = стандартное отклонение;

U= среднее арифметическое.

После того как мы определили все ценовые значения, соответствующие каждой точке данных, мы можем сказать, что сконструировали распределение, к которому, как ожидается, будут стремиться точки данных.

Однако данный метод позволяет сделать намного больше. Мы можем включить два дополнительных параметра, которые позволят нам рассмотреть типы сценариев «что если». Эти параметры, которые мы назовем параметрами «что если», позволяют увидеть влияние изменения нашей средней сделки, или измене ния дисперсии (стандартного отклонения) сделок.

Первый из этих параметров, называемый сжатием (shrink), затрагивает среднюю сделку. Сжатие — это просто множитель нашей средней сделки. Вспомните, что когда мы находим оптимальное f, то попутно получаем другие величины, которые являются полезными побочными продуктами оптимального f. Такие расчеты включают среднее геометрическое, TWR и среднюю геометрическую сделку.

Сжатие является величиной, на которую мы умножаем среднюю сделку еще до того, как осуществляем поиск оптимального f. Следовательно, сжатие позволяет нам рассчитать оптимальное f для того случая, когда средняя сделка затронута сжатием, а также рассчитать новые побочные продукты. Предположим, вы торгуете в системе, которая в последнее время работала очень эффективно. Вы знаете, что рано или поздно система прекратит работать так же успешно, поэтому хотите знать, что произойдет, если средняя сделка будет уменьшена наполовину.

Используя значение сжатия 0,5 (так как сжатие является множителем, то средняя сделка, умноженная на 0,5, будет равна половине средней сделки), вы можете найти оптимальное f, когда средняя сделка уменьшается наполовину. Вы сможете увидеть, как такие изменения затрагивают геометрическую среднюю сделку и другие величины. Используя значение сжатия 2, вы также сможете увидеть последствия удвоения средней сделки. Другими словами, параметр сжатия может также использоваться для увеличения вашей средней сделки. Более того, он позволяет вам взять неприбыльную систему (то есть систему со средней сделкой меньше нуля) и, используя отрицательное значение сжатия, посмотреть, что произойдет, если эта система станет прибыльной. Допустим, у вас есть система, которая показывает среднюю сделку -100 долларов. Если вы будете использовать значение сжатия -0,5, то получите оптимальное f для этого распределения со средней сделкой 50 долларов, так как -100 * * -0,5 = 50. Если бы мы использовали фактор сжатия -2, то получили бы распределение со средней сделкой долларов. Следует крайне аккуратно использовать параметры «что если», так как они легко могут привести к неправильным результатам. Уже было упомянуто, что вы можете превратить систему с отрицательной арифметической средней сделкой в прибыльную систему. Это может привести к проблемам, если, например, в будущем, у вас по-прежнему будет отрицательное ожидание. Другой параметр «что если» называется растяжением (stretch), но он не противоположен сжатию, как можно было бы подумать. Растяжение является множителем стандартного отклонения. Вы можете использовать этот параметр для определения влияния разброса на f и его побочные продукты. Растяжение всегда должно быть положительным числом, в то время как сжатие может быть положительным или отрицательным (пока средняя сделка, умноженная на сжатие, имеет по ложительное значение). Если вы хотите увидеть, что произойдет, когда ваше стандартное отклонение удвоится, просто используйте значение 2 для растяжения.

Чтобы увидеть, что произойдет, если разброс уменьшится, используйте значение меньше 1.При использовании этого метода вы заметите, что, когда растяжение стремится к нулю, значения побочных продуктов увеличиваются, и, в результате, вы получаете более оптимистичную оценку будущего, и наоборот. Сжатие работает противоположным образом, так как при сжатии, стремящемся к нулю, мы получаем более пессимистичные оценки будущего, и наоборот. После того как мы зададим значения, которые будем использовать для растяжения и сжатия (сейчас и для одного, и для другого мы будем использовать единицу, то есть оставим действительные параметры без изменения), можно изменить уравнение (3.27):

(3.28) D = (U * Сжатие) + (S * E * Растяжение), где D = значение цены, соответствующее значению стандартной единицы;

Е = значение стандартной единицы;

S = стандартное отклонение;

U = среднее арифметическое.

Подведем итоги. Первые два шага определяют ограничительные параметры (число сигма с каждой стороны от среднего, а также количество равноотстоящих точек данных, которое мы собираемся использовать в этом интервале).

Следующие два шага — это нахождение действительных вводных параметров (средней арифметической сделки и стандартного отклонения). Мы можем по лучить эти параметры эмпирически из результатов торговой системы или из брокерских отчетов. Можно также получить эти величины оценочным путем, но помните, что результаты в этом случае будут настолько точны, насколько точны ваши оценки. Пятый и шестой шаги позволяют определить факторы, которые надо использовать для растяжения и сжатия, если вы собираетесь использовать сценарий «что если», в противном случае просто используйте единицу как для растяжения, так и для сжатия. Седьмым шагом будет использование уравнения (3.28) для преобразования равноотстоящих точек данных из стандартных значений либо в пункты, либо в доллары (в зависимости от того, что вы использовали в качестве вводных данных для средней арифметической сделки и стандартного отклонения).

Восьмой шаг позволит найти вероятность, ассоциированную (associated) (на ходящуюся во взаимно однозначном соответствии) с каждой из равноотстоящих точек данных. Эта вероятность определяется уравнением 3.21):

Мы будем использовать уравнение (3.21) без оговорки «если Z < 0, тогда N(Z) = 1 N(Z)», так как нам надо знать, какова вероятность события, равного или превышающего заданное количество стандартных единиц.

Каждая точка данных имеет стандартное значение, определяемое как параметр Z в уравнении (3.21), а также значение, выраженное в долларах или пунктах.

Существует еще одна переменная, соответствующая каждой равноотстоящей точке данных, — ассоциированная вероятность.

Алгоритм расчета Алгоритм будет продемонстрирован на торговом примере, уже рассмотренном в этой главе. Так как наши 232 сделки выражены в пунктах, нам следует преобразовать их в соответствующие долларовые значения. Какой именно рынок рассматривается, нам неизвестно, поэтому зададим произвольное значение в 1000 долларов за пункт. Таким образом, средняя сделка 0,330129 преобразуется в 0,330129 * 1000 долларов, или в 330,13 доллара. Стандартное отклонение 1,743232, умноженное на 1000 долларов за пункт, станет равно 1743,23 доллара. Теперь построим матрицу. Сначала мы должны определить диапазон (количество сигма от среднего), в который попадают данные. В нашем примере мы выберем 3 сигма, что означает диапазон от минус 3 сигма до плюс 3 сигма. Отметьте, что следует использовать одинаковое количество сигма слева и справа от среднего. Далее следует определиться с тем, на сколько равноотстоящих точек данных разделить полученный интервал. Выбрав 61, мы получим точку данных на каждой десятой части стандартной единицы. Таким образом, мы зададим столбец стандартных значений.

Теперь мы должны определить среднее арифметическое, которое будем ис пользовать в качестве вводного данного. Мы определим его эмпирически из сделок, в нашем случае оно равно 330,13 доллара. Далее мы найдем стандартное отклонение, которое также определим эмпирически из 232 сделок, оно будет равно 1743,23 доллара. Теперь рассчитаем столбец ассоциированных P&L, то есть определим P&L для каждого стандартного значения. Но до того как определять столбец ассоциированных P&L, мы должны задать значения для растяжения и сжатия. Так как сейчас мы не собираемся рассматривать сценарии «что если», то возьмем единицу как для растяжения, так и для сжатия.

Среднее арифметическое = 330, Стандартное отклонение = 1743, Растяжение = Сжатие = С помощью уравнения (3.28) можно рассчитать столбец ассоциированных P&L.

Для этого возьмите каждое стандартное значение и подставьте в уравнение (3.28):

(3.29) D = (U * Сжатие) + (S * E * Растяжение), где D = значение цены, соответствующее значению стандартной единицы;

Е = значение стандартной единицы;

S = стандартное отклонение;

U=среднее арифметическое.

При стандартном значении -3 ассоциированное P&L составляет:

D = (U * Сжатие) + (S * E * Растяжение) = (330,129 * 1) + (1743,232 * (-3) * 1) = 330,129 + (-5229,696) = 330,129 - 5229,696 = -4899, Таким образом, ассоциированное P&L при стандартном значении -3 равно 4899,567. Теперь нам надо определить ассоциированное P&L для следующего стандартного значения, которое составляет -2,9, для чего решим то же уравнение (3.29), только на этот раз возьмем Е = -2,9. Теперь определим столбец ассоции рованной вероятности. Ее можно рассчитать, используя стандартное значение в качестве вводного данного для Z в уравнении (3.21) без оговорки «если Z < О, тогда N(Z) = 1 - N(Z)». При стандартном значении -3 (Z = -3) получаем:

N(Z) = N'(Z) * ((1,330274429 * Y^ 5) - (1,821255978 * Y^ 4) + + (1,781477937 * Y ^ 3) - (0,356563782 * Y^ 2 + (0,31938153 * Y))) Если Z < 0, тогда N(Z) = 1 - N(Z), где Y =1/(1+0,2316419 *ABS(Z));

ABS() = функция абсолютного значения;

V N'(Z) = 0,398942 * EXP (- (Z^2/2));

ЕХР() = экспоненциальная функция. Таким образом:

N'(-3) = 0,398942 * EXP (- ((-3)^2/2)) = 0,398942 * ЕХР(- (9/2)) = 0,398942 * EXP ( 4,5) =0,398942*0,011109 =0,004431846678 Y = 1 / (1 + 0,2316419 * ABS(-3)) = I/(1+0,2316419*3) =1/(1+ 0,6949257) =1/1,6949257 = 0, N(-3) = 0,004431846678 * ((1,330274429 * 0,5899963639 ^ 5) - (-1,821255978 * 0,5899963639^ 4) + + (1,781477937 * 0,5899963639^3) - (0,356563782 * 0,589996363^ 2) + + (0,31938153 * 0,5899963639)) = 0,004431846678 * ((1,330274429 * 0,07149022693) - (1,821255978 * 0,1211706) + (1,781477937 * 0,2053752) - (0,356563782 * 0,3480957094) + (0,31938153 * 0,5899963639)) = 0, * (0,09510162081- 0,2206826796+ 0,3658713876 -0,1241183226 + 0,1884339414) =0,004431846678*0,3046059476 =0, Отметьте, если Z имеет отрицательное значение (Z = -3), нам не надо менять N(Z) на N(Z) = 1 - N(Z). Теперь для каждого значения в столбце стандартных значений будут соответствующие значения в столбце ассоциированных P&L и в столбце ассоциированной вероятности. Это показано в следующей таблице. После того как вы заполните эти три столбца, можно начать поиск оптимального f и его побочных продуктов.

Стандартное Ассоциированные P&L Ассоциированная Ассоциированное значение HPR при значение вероятность f= 0, -3,0 ($4899,57) 0,001350 0, -2,9 ($4725,24) 0,001866 0, -2,8 ($4550,92) 0,002555 0, -2,7 ($4376,60) 0,003467 0, -2,6 ($4202,27) 0,004661 0, -2,5 ($4027,95) 0,006210 0, -2,4 ($3853,63) 0,008198 0, -2,3 ($3679,30) 0,010724 0, -2,2 ($3504,98) 0,013903 0, Продолжение Стандартное Ассоциированные P&L Ассоциированная Ассоциированное значение HPR при значение вероятность f= 0, -2,1 ($3330,66) 0,017864 0, -2,0 ($3156,33) 0,022750 0, -1,9 ($2982,01) 0,028716 0, -1,8 ($2807,69) 0,035930 0, -1,7 ($2633,37) 0,044565 0, -1,6 ($2459,04) 0,054799 0, -1,5 ($2284,72) 0,066807 0, -1,4 ($2110,40) 0,080757 0, -1,3 ($1936,07) 0,096800 0, -1,2 ($1761,75) 0,115070 0, -1,1 ($1587,43) 0,135666 0, -1,0 ($1413,10) 0,158655 0, -0,9 ($1238,78) 0,184060 0, -0,8 ($1064,46) 0,211855 0, -0,7 ($890,13) 0,241963 0, -0,6 ($715,81) 0,274253 0, -0,5 ($541,49) 0,308537 0, -0,4 ($367,16) 0,344578 0, -0,3 ($192,84) 0,382088 0, -0,2 ($18,52) 0,420740 0, -0,1 $155,81 0,460172 1, 0,0 $330,13 0,500000 1, 0,1 $504,45 0,460172 1, 0,2 $678,78 0,420740 1, 0,3 $853,10 0,382088 1, 0,4 $1027,42 0,344578 1, 0,5 $1201,75 0,308537 1, Продолжение Стандартное Ассоциированные P&L Ассоциированная Ассоциированное значение HPR при значение вероятность f= 0, 0,6 $1376,07 0,274253 1, 0,7 $1,550,39 0,241963 1, 0,8 $1724,71 0,211855 1, 0,9 $1899,04 0,184060 1, 1,0 $2073,36 0,158655 1, 1,1 $2247,68 0,135666 1, 1,2 $2422,01 0,115070 1, 1,3 $2596,33 0,096800 1, 1,4 $2770,65 0,080757 1, 1,5 $2944,98 0,066807 1, 1,6 $3119,30 0,054799 1, 1,7 $3293,62 0,044565 1, 1,8 $3,467,95 0,035930 1, 1,9 $3642,27 0,028716 1, 2,0 $3816,59 0,022750 1, 2,1 $3990,92 0,017864 1, 2,2 $4165,24 0,013903 1, 2,3 $4339,56 0,010724 1, 2,4 $4513,89 0,008198 1, 2,5 $4688,21 0,006210 1, 2,6 $4862,53 0,004661 1, 2,7 $5036,86 0,003467 1, 2,8 $5211,18 0,002555 1, 2,9 $5385,50 0,001866 1, 3,0 $5559,83 0,001350 1, Побочные продукты при f= 0,01:

TWR= 1, Сумма вероятностей = 7, Среднее геометрическое = 1, GAT = $328,09 доллара.

Оптимальное f надо искать следующим образом. Сначала вы должны опреде литься с методом поиска f. Можно просто перебрать числа от 0 до 1 с определен ным шагом (например 0,01), используя итерационный метод, или применить метод параболической интерполяции, описанный в книге «Формулы управления портфелем». Вам следует определить, какое значение f (между 0 и 1) позволит получить наибольшее среднее геометрическое. После того как вы определитесь с методом поиска, следует найти ассоциированное P&L наихудшего случая. В нашем примере это значение P&L, соответствующее -3 стандартным единицам, то есть -4899,57.

Для того чтобы найти средние геометрические для значений f, которые вы будете перебирать в поиске оптимального, нужно преобразовать каждое значение ассоциированных P&L и вероятность в HPR. Уравнение (3.30) позволяет рассчи тать HPR:

где L = ассоциированное значение P&L;

W = ассоциированное значение P&L наихудшего случая (это всегда отрицательное значение);

f= тестируемое значение f;

Р = ассоциированная вероятность.

Для f=0,01 найдем ассоциированное HPR при стандартном значении-3. Ассо циированное P&L наихудшего случая составляет -4899,57. Поэтому HPR равно:

HPR = (1 + (-4899,57 / (-4899,57 / (-0,01))))^ 0,001349966857 = (1 + ( 4899,57/489957))^ 0,001349966857 = (1 + (-0,01))^ 0,00139966857 = 0,99^ 0,001349966857 = 0, После того как мы найдем ассоциированные HPR для тестируемого f (0,01 в нашем примере), можно рассчитать TWR. TWR — это произведение всех HPR для данного значения f:

где N = общее число равноотстоящих точек данных;

HPR = HPR из уравнения (3.30), соответствующее точке данных i.

Поэтому для нашего тестируемого значения f= 0,01 TWR равно:

TWR = 0,9999864325 * 0,9999819179 *... * 1,0000152327 = 1, Мы можем легко преобразовать TWR в среднее геометрическое, возведя TWR в степень, равную единице, поделенной на сумму всех ассоциированных вероятностей.

где N == число равноотстоящих точек данных;

R = ассоциированная вероятность точки данных i.

Если мы просуммируем значения столбца, который включает 61 ассоциированную вероятность, получим 7,979105. Поэтому среднее геометрическое при f= 0, равно:

G = 1,0053555695 ^ (1/7,979105) = 1,00535555695 ^ 0,1253273393 = 1, Мы можем также рассчитать среднюю геометрическую сделку (GAT). Это сумма, которую вы бы заработали в среднем на контракт за сделку, если бы торговали при этом распределении результатов и при данном значении f.

где G(f) = среднее геометрическое для данного значения f;

W = ассоциированное P&L наихудшего случая.

GAT = (1,00066963 - 1) * (-4899,57 / (-0,01)) = 0,00066963 * 489957 = 328, Таким образом, в среднем на контракт можно ожидать выигрыша в 328,09 доллара.

Теперь перейдем к следующему значению f, которое должно тестироваться в соответствии с выбранной процедурой поиска оптимального f. В нашем случае мы проверяем значения f от 0 до 1 с шагом 0,01, так что следующим тестируемым значением f будет 0,02. Рассчитаем новый столбец ассоциированных HPR, а также найдем TWR и среднее геометрическое. Значение f, которое в результате даст наивысшее среднее геометрическое, является оптимальным (для вводных параметров, которые мы использовали). Если бы для данного примера мы продолжили поиск оптимального f, то получили бы f= 0,744 (при расчете оптимального f используется шаг 0,001). Среднее геометрическое в этом случае равно 1,0265. Соответствующая средняя геометрическая сделка составит 174, доллара.

Следует отметить, что само по себе значение TWR не столь важно. Когда мы рассчитываем среднее геометрическое параметрически, как в этом примере, TWR просто является промежуточным шагом для получения этого среднего гео метрического. Теперь мы можем рассчитать, каким было бы наше TWR после Х сделок, возведя среднее геометрическое в степень X. Поэтому если мы хотим рассчитать TWR для 232 сделок при среднем геометрическом 1,0265, то следует возвести 1,0265 в степень 232, что даст 431,79. В таком случае, при торговле с оптимальным f =0,744 можно ожидать прибыль 43079% ((431,79 - 1) * 100) после 232 сделок. Еще одним побочным продуктом, который мы рассчитаем, будет порог геометрической торговли (2.02):

Порог геометрической торговли = 330,13/174,45 * -4899,57 / -0,744 = 12462, Отметьте, что значение средней арифметической сделки 330,13 доллара не явля ется результатом, полученным с помощью этого метода, а используется как один из вводных параметров.

Мы можем преобразовать оптимальное f в количество контрактов для торговли с помощью уравнения:

(3.34) K=E/Q, где К = число контрактов для торговли;

Е = текущий баланс счета.

(3.35) Q=W/(-f), где W = ассоциированное P&L наихудшего случая;

Отметьте, что переменная Q представляет собой число, на которое вы должны разделить баланс счета, чтобы узнать сколькими контрактами торговать, при этом баланс должен ежедневно корректироваться. Возвращаясь к нашему примеру: Q = -4899,57 / -0,744 = $6585, Следовательно, мы будем торговать 1 контрактом на каждые 6585,44 доллара на балансе счета. Для счета размером в 25 000 долларов это означает, что мы будем торговать:

К =25 000/6585,44 = 3, Так как мы не можем торговать дробными контрактами, то должны округлить это число 3,796253553 вниз до ближайшего целого числа. Поэтому для счета в 25 долларов мы будем торговать 3 контрактами. Причина, по которой мы всегда будем округлять вниз, а не вверх, состоит в том, что плата за нахождение ниже оптимального f меньше, чем плата за нахождение выше.

Отметьте, насколько чувствительна торговля оптимальным числом контрактов к наихудшему убытку. Наихудший убыток зависит только от того, на сколько стандартных отклонений вы отходите влево от среднего. Данный ограни чительный параметр, интервал, выраженный в количестве стандартных отклоне ний, очень важен. В нашем расчете мы выбрали три сигма. Это означает, что мы допускаем проигрыш в три сигма. Однако проигрыш за пределами трех сигма мо жет сильно нам повредить, если он выйдет слишком далеко за это значение. По этому вам следует быть очень осторожными с выбором этого ограничительного параметра. От величины интервала зависит очень многое. Заметьте, что для простоты изложения мы не учитывали комиссионные и проскальзывание. Если учитывать комиссионные и проскальзывание, то следует вычесть Х долларов комиссионных и проскальзывания из каждой сделки в самом начале. Затем следует рассчитать среднюю арифметическую сделку и стандартное отклонение на основе 232 измененных сделок и далее выполнить уже известную процедуру. Теперь рассмотрим сценарий «что если». Допустим, мы хотим посмотреть, что произойдет, если прибыль в средней сделке уменьшится вдвое (сжатие = 0,5). Да лее предположим, что рынок становится очень волатильным и дисперсия увели чивается на 60% (растяжение = 1,6). Подставляя эти параметры в систему, мы мо жем посмотреть, как они влияют на оптимальное f, и скорректировать нашу тор говлю до того, как эти изменения произойдут на самом деле. Таким образом, оптимальное f будет равно 0,262, что соответствует торговле 1 контрактом на каж дые 31 305,92 доллара на балансе счета (так как P&L наихудшего случая сильно за висит от растяжения и сжатия). Среднее геометрическое упадет до 1,0027, средняя геометрическая сделка уменьшится до 83,02 доллара, a TWR за 232 сделки будет равно 1,869. Такие изменения вызваны уменьшением средней сделки на 50% и увеличением стандартного отклонения на 60%, что вполне может произойти на практике. Также возможно, что будущее будет более благоприятно, чем прошлое.

Мы можем проанализировать другую ситуацию. Допустим, мы хотим посмотреть, что произойдет, если наша средняя прибыль увеличится на 10%. Для этого следует ввести значение сжатия 1,1. Параметры «что если», растяжение и сжатие, крайне важны в управлении капиталом.

Чем ближе ваше распределение торговых P&L к нормальному, тем лучше будет работать метод. Проблема почти всех методов управления деньгами состоит в том, что следует учитывать определенный «коэффициент ухудшения». Здесь ухудшение — это разница между нормальным распределением и распределением, которое вы реально получаете. Разница между ними и есть коэффициент ухудшения, и чем больше этот коэффициент, тем менее эффективным становится метод.

С помощью вышеописанного метода мы определили, что торговля 1 контрак том на каждые 6585,44 доллара на балансе счета оптимальна. Однако если бы мы совершили эти сделки на практике и определили оптимальное f эмпирически, то оптимальным был бы 1 контракт на каждые 7918,04 доллара на балансе счета. Как можно видеть, использование нормального распределения сместило нас слегка вправо вдоль кривой f и привело к торговле несколько большим числом контрак тов, чем предлагает эмпирический метод.

Однако, как мы увидим позже, многое говорит в пользу того, что будущее рас пределение цен будет нормальным. Когда мы покупаем или продаем опцион, предположение, что будущее распределение изменений цены базового инстру мента будет нормальным, уже заложено в цену опциона. Точно так же можно ска зать, что трейдеры, не использующие механические системы, получат в будущем результаты, которые нормально распределены.

В методе, описанном в этой главе, используются неприведенные данные. При использовании приведенных данных метод будет выглядеть следующим образом:

1. До того как данные нормированы, их следует привести к текущим ценам путем преобразования всех торговых прибылей и убытков в процентные прибыли и убытки с помощью уравнений с (2.10а) по (2.10в). Затем эти процентные прибыли и убытки следует умножить на текущую цену 2. Когда вы перейдете к нормированию этих данных, нормируйте приведенные данные, используя среднее и стандартное отклонение приведенных данных.

3. Далее, определите оптимальное f, среднее геометрическое и TWR. Средняя геометрическая сделка, средняя арифметическая сделка и порог геометрической торговли справедливы только для текущей цены базового инструмента. Когда цена базового инструмента изменяется, процедура должна быть проведена заново. Когда вы перейдете к повторному проведению процедуры с другой ценой базового инструмента, вы получите то же оптимальное f, среднее геометрическое и TWR. Однако средняя арифметическая сделка, средняя геометрическая сделка и порог геометрической торговли будут другими в зависимости от новой цены базового инструмента.

4. Количество контрактов для торговли, рассчитываемое с помощью уравнения (3.34), соответствующим образом изменится. P&L наихудшего случая, переменная W, используемая в уравнении (3.34), также изменится.

Из этой главы, мы узнали, как найти оптимальное f по распределению вероятности. Мы использовали нормальное распределение, так как оно описывает многие естественно происходящие процессы. Кроме того, с ним легче работать, чем со многими другими распределениями, так как можно рассчитать интеграл функции нормального распределения с помощью уравнения (3.21)1. Однако нормальное распределение зачастую является неполной моделью для распределения торговых прибылей и убытков. Какая модель будет приемлемой для наших целей? В следующей главе мы ответим на этот вопрос и будем полагаться на методы из главы 3 при работе с любым видом распределения вероятности независимо от того, существует интеграл функции распределения или нет.

Глава Параметрические методы для других распределений Из предыдущей главы мы узнали, как найти оптимальное f и его побочные продукты при нормальном распределении. Тот же метод применим к любому другому распределению, где известна функция распределения вероятности (то есть интеграл плотности распределения вероятности). О многих известных распределениях и об их функциях распределения вероятности рассказано в приложении В.

Интеграл функции, описывающей нормальное распределение, в действительности нельзя точно рассчитать, но его можно получить с большой степенью точности с помощью уравнения (3.21), чего нельзя сказать о многих других распределениях К сожалению, большинство распределений торговых P&L плохо описываются функциями нормального и других распределений. В этой главе мы сначала обратимся к проблеме неопределенной природы распределения торговых P&L и далее изучим метод планирования сценария — естественное продолжение идеи оптимального/. Этот метод широко применяется и позволяет находить оптимальное f по ячеистым распределениям. Далее мы перейдем к следующей главе, посвященной опционам и одновременной торговле по нескольким позициям.

Прежде чем смоделировать реальное распределение торговых P&L, мы должны найти метод сравнения двух распределений.

Тест Колмогорова-Смирнова (К-С) Хи-квадрат тест, без сомнения, является наиболее популярным из всех методов сравнения двух распределений. Так как многие ориентированные на рынок при ложения, помимо рассматриваемых в этой главе, часто используют хи-квадрат тест, то он описан в Приложении А. Однако для наших целей наилучшим методом будет тест К-С. Этот очень эффективный тест применим к неячеистым распреде лениям, которые являются функцией одной независимой переменной (в нашем случае, прибыль за одну сделку).

Все функции распределения вероятности имеют минимальное значение 0 и мак симальное значение 1. То, как они ведут себя между ними, и отличает их. Тест К-С измеряет очень простую переменную D, которая определяется как максимальное абсолютное значение разности между двумя функциями распределения вероятности. Тест К-С достаточно прост. N объектов (в нашем случае сделок) нормируются (вычитается среднее значение, и полученная разность делится на стандартное отклонение) и сортируются в порядке возрастания. Когда мы проходим эти отсортированные и нормированные сделки, накопленная вероятность рассматриваемого количества сделок делится на N. Когда мы берем первую сделку в отсортированной последовательности с наименьшим стандартным значением, функция распределения вероятности (cumulative density function, далее — ФРВ) равна 1/N. Для каждого стандартного значения, которое мы проходим, приближаясь к наибольшему стандартному значению, к числителю прибавляется единица. В конце последовательности наша ФРВ будет равна N/N, или 1. Для каждого стандартного значения мы можем рассчитать теоретическое распределение. Таким образом, мы можем сравнить фактическую функцию распределения вероятности с любой теоретической функцией распределения вероятности. Переменная D, или статистика К-С (К-С statistic), равна наибольшему расстоянию между значением нашей фактической функции распределения вероятности и значением теоретического распределения ФРВ при этом же стан дартном значении. При сравнении фактической ФРВ для данного стандартного значения с теоретической ФРВ для этого же стандартного значения мы должны также сравнить теоретическую ФРВ предыдущего стандартного значения с фактической ФРВ текущего стандартного значения.

Для того чтобы прояснить эту ситуацию, посмотрим на рисунок 4-1. Отметьте. что в точке А фактическая кривая находится выше теоретической. Поэтому мы сравниваем текущее значение фактической ФРВ с текущим теоретическим значе нием для нахождения наибольшей разности. Однако в точке В фактическая кривая находится ниже теоретической. Поэтому мы сравниваем предыдущее фактическое значение с текущим теоретическим значением. Идея состоит в том, что в результате мы выберем наибольшую разность.

Для каждого стандартного значения нам надо взять абсолютное значение разности между текущим значением фактической ФРВ и текущим значением теоретической ФРВ. Нам также надо взять абсолютное значение разности между предыдущим значением фактической ФРВ и текущим значением теоретической ФРВ. Повторив эту операцию для всех стандартных значений точек, где фактическая ФРВ делает скачок вверх на 1/N, и взяв наибольшую разность, мы определим переменную D.

Рисунок 4-1 Тест К-С Чем ниже значение D, тем больше похожи два распределения. Мы можем преоб разовать значение D в уровень значимости с помощью следующей формулы:

где SIG = уровень значимости для данного D и N;

D = статистика К-С;

N = количество сделок, по которым определена статистика К-С;

% = оператор, означающий остаток после деления. Здесь J%2 дает остаток после деления J на 2;

ЕХР() = экспоненциальная функция.

Нет необходимости суммировать значения J от 1 до бесконечности. Уравнение сходится (обычно очень быстро) к определенному значению. После того как пре дел достигнут (согласно допуску, установленному пользователем), нет необходи мости продолжать суммирование значений.

Рассмотрим уравнение (4.01) на примере. Допустим, у нас есть 100 сделок, а значение статистики К-С равно 0,04:

J1 = (1 % 2) * 4 - 2 * ЕХР(-2 * 1^2 * (100^(1/2) * 0,04) л 2) =1*4-2* ЕХР(-2 * ^ 2 * (10 * 0,04)^ 2) = 2 * ЕХР(-2 * 1^2 * 0,^ 2) = 2*ЕХР(-2*1*0,16) = 2 * ЕХР(-0,32) = 2 * 0,726149 = 1, Таким образом, нашим первым значением является 1,452298. Теперь прибавим следующее значение:

J2 = (2 % 2) * 4 - 2 * ЕХР(-2 * 2^ 2 * (100^ (1/2) * 0,04)^2) =0*4-2* ЕХР(-2 * 2^ 2 * (10 * 0,04)^ 2) = -2 * ЕХР(-2 * 2^ 2 * 0,4^ 2) = -2*ЕХР(-2*4*0,16) = -2*ЕХР(-1,28) = -2 * 0,2780373 = -0, Прибавив -0,5560746 к нашей текущей сумме 1,452298, мы получим новую теку щую сумму 0,8962234. Затем снова увеличим J на 1, теперь оно будет равно 3, и решим уравнение. Получившееся значение прибавим к текущей сумме 0,8962234.

Следует поступать таким образом и дальше, пока текущая сумма в пределах допуска не перестанет изменяться. В нашем примере предельное значение будет равно 0,997. Этот ответ означает, что при 100 сделках и значении статистики К-С 0,04 мы можем быть уверены на 99,7%, что фактическое распределение генерировано функцией теоретического распределения. Другими словами, мы можем быть на 99,7% уверены, что функция теоретического распределения представляет фактическое распределение. В данном случае это очень хороший уровень значимости.

Создание характеристической функции распределения Нормальное распределение вероятности далеко не всегда является хорошей мо делью распределения торговых прибылей и убытков. Более того, ни одно из рас пространенных распределений вероятности не является идеальной моделью. По этому мы должны сами создать функцию для моделирования распределения на ших торговых прибылей и убытков.

Распределение изменений цены в общем случае относится к распределениям Парето (см. приложение В). Распределение торговых P&L можно считать трансформацией распределения цен. Эта трансформация является результатом торговых методов, когда трейдеры пытаются понизить свои убытки и увеличить прибыли, следовательно, распределение торговых P&L можно отнести к распределениям Парето. Однако распределение, которое мы будем изучать, не является распределением Парето. Распределение Парето, как и все другие функции распределения, моделирует определенное вероятностное явление. Оно моделирует распределение сумм независимых, идентично распределенных случайных переменных. Функция распределения, которую мы будем изучать, не моделирует конкретное вероятностное явление. Она моделирует многие унимодальные функции распределения. Поэтому она может повторить форму и плотность вероятности распределения Парето, а также любого другого унимодального распределения.

Теперь мы создадим эту функцию. Для начала рассмотрим следующее уравнение:

(4.02) Y=1/(X^ 2+1) График этого уравнения — обычная колоколообразная кривая, симметричная относительно оси Y, как показано на рисунке 4-2.

Таким образом, мы будем строить свои рассуждения, используя это общее уравнение. Переменную Х можно представить как число стандартных единиц с каждой стороны от среднего, т.е. от оси Y. Мы можем использовать первый момент этого «распределения», расположение его среднего значения, добавив значение для изменения расположения на оси X. Уравнение изменится следующим образом:

(4.03) Y=1/(X-LOC^2+1), где Y = ордината характеристической функции;

Х = количество стандартных отклонений;

LOC = переменная, задающая расположение среднего значения, первый момент распределения.

Рисунок 4-2 LOC = 0 SCALE = I SKEW = 0 KURT = Рисунок 4-3 LOC =0,5, SCALE = 1, SKEW = 0, KURT= Таким образом, если бы мы хотели изменить расположение, передвинув график влево на 0,5 единицы, мы бы установили LOC на -0.5. Этот график изображен на рисунке 4-3.

Таким же образом, если бы мы хотели сместить кривую вправо, то исполь зовали бы положительное значение для переменной LOC. LOC с нулевым значением не будет смещать график, как показано на рисунке 4-2.

Показатель в знаменателе влияет на эксцесс. До настоящего момента эксцесс был равен 2, но мы можем изменить его, изменив значение показателя. Теперь формулу нашей характеристической функции можно записать следующим образом:

(4.04) Y = 1 / ((X - LOC)^ KURT + 1), где Y == ордината характеристической функции;

Х = количество стандартных отклонений;

LOC = переменная, задающая расположение среднего значения, первый момент распределения;

KURT = переменная, задающая эксцесс, четвертый момент распределения.

Рисунки 4-4 и 4-5 показывают влияние эксцесса на нашу характеристическую функцию. Отметьте: чем выше показатель, тем более плосковерхое и тонкохвостое распределение (эксцесс меньше нормального), и чем меньше показатель, тем более острый верх и тем толще хвосты распределения (эксцесс больше нормального).

Чтобы не получить иррациональное число, когда KURT < 1, мы будем исполь зовать абсолютное значение коэффициента в знаменателе. Это не повлияет на форму кривой. Таким образом, мы можем переписать уравнение (4.04) следующим образом:

(4.04) Y = 1/(ABS(X - LOC)^ KURT + 1) Мы можем добавить множитель в знаменателе, чтобы контролировать ширину, второй момент распределения. Характеристическая функция будет выглядеть следующим образом:

(4.05) Y = 1 / (ABS((X - LOC) * SCALE)^ KURT + 1), где Y = ордината характеристической функции;

X = количество стандартных отклонений;

LOC = переменная, задающая расположение среднего значения, первый момент распределения;

Рисунок 4-4 LOC=0, SCALE =1, SKEW = 0, KURT = Рисунок 4-5 LOG = 0, SCALE = 1, SKEW = О, KURT = KURT = переменная, задающая эксцесс, четвертый момент распределения;

SCALE = переменная, задающая ширину, второй момент распределения.

Рисунки 4-6 и 4-7 иллюстрируют изменение параметра ширины. Действие этого параметра можно представить как движение горизонтальной оси вверх или вниз Когда ось сдвигается вверх (при уменьшении ширины), график расширяется (см рисунок 4-6), как будто мы смотрим на его верхнюю часть. На рисунке 4-7 показа на обратная ситуация, когда горизонтальная ось сдвигается вниз и кривая распре деления сжимается. Теперь у нас есть характеристическая функция распределения, с помощью которой мы контролируем три из четырех моментов распределения Сейчас распределение симметрично. Для этой функции нам необходимо добавить коэффициент асимметрии, третий момент распределения. Характеристическая функция тогда будет выглядеть следующим образом:

где С = показатель асимметрии, рассчитанный следующим образом:

Y = ордината характеристической функции;

Х= количество стандартных отклонений;

LOC= переменная, задающая расположение среднего значения, первый момент распределения;

KURT = переменная, задающая эксцесс, четвертый момент распределения;

SCALE = переменная, задающая ширину, второй момент распределения;

SKEW= переменная, задающая асимметрию, третий момент распределения;

sign() = функция знака, число 1 или -1. Знак Х рассчитывается как X/ ABS(X) для X, не равного 0. Если Х равно нулю, знак будет считаться положительным;

Рисунки 4-8 и 4-9 показывают действие переменной асимметрии на распределение.

Отметим несколько важных особенностей параметров LOC, SCALE, SKEW и KURT. За исключением переменной LOC (которая выражена как число стандартных значений для смещения распределения), другие три Рисунок 4-6 LOC=0, SCALE =0,5, SKEW = 0, KURT= Рисунок 4-7 LOC=0, SCALE = 2, SKEW = 0, KURT=2, Рисунок 4-8 LOC=0, SCALE =1, SKEW =-0,5, KURT = 2.

Рисунок 4-9 LOG = 0, SCALE = 1, SKEW = +0,5, KURT = 2.

переменные являются безразмерными, то есть их значения являются числами, ко торые характеризуют форму распределения и относятся только к этому рас пределению. Значения параметров будут другими, если вы примените стандартные измерительные методы, детально описанные в разделе «Величины, описывающие распределения» главы 3. Например, если вы определите один из коэффициентов асимметрии Пирсона на наборе данных, он будет отличаться от значения пере менной SKEW для распределений, рассматриваемых здесь. Значения четырех пе ременных уникальны для рассматриваемого распределения и имеют смысл только в данном контексте. Крайне важен интервал возможных значений этих переменных. Переменная SCALE всегда должна быть положительной, кроме того, она не ограничена сверху. То же самое верно для переменной KURT. На практике, однако, лучше использовать значения от 0,5 до 3, в крайнем случае, от 0,05 до 5.

Вы можете использовать значения и за пределами этих крайних точек при условии, что они больше нуля.

Переменная LOC может быть положительной, отрицательной или нулем. Па раметр SKEW должен быть больше или равен -1, и меньше или равен +1. Когда SKEW равен +1, вся правая сторона распределения (справа от пика) равна пику.

Когда SKEW равен -1, пику равна вся левая сторона распределения. Интервалы значений переменных в общем виде таковы:

(4.08) - бесконечность < LOC < + бесконечность (4.09) SCALE > (4.10) -1<=SKEW<=+ (4.11) KURT > О Рисунки с 4-2 по 4-9 показывают, как легко изменяется распределение. Мы можем подогнать эти четыре параметра таким образом, чтобы получившееся в результате распределение было похоже на любое другое распределение.

Подгонка параметров распределения Как и в процедуре, описанной в главе 3, по поиску оптимального f при нор мальном распределении, мы должны преобразовать необработанные торговые данные в стандартные единицы. Сначала мы вычтем среднее из каждой сделки, а затем разделим полученное значение на стандартное отклонение. Далее мы будем работать с данными в стандартных единицах. После того как мы приведем сделки к стандартным значениям, можно отсортировать их в порядке возрастания. На основе полученных данных мы сможем провести тест К-С. Нашей целью является поиск таких значений LOC, SCALE, SKEW и KURT, которые наилучшим образом подходят для фактического распределения сделок. Для определения «наилучшего приближения» мы полагаемся на тест К-С. Рассчитаем значения параметров, используя «метод грубой силы двадцатого века». Мы просчитаем каждую комбинацию для KURT от 3 до 0,5 с шагом -0,1 (мы можем также взять интервал от 0,5 до 3 с шагом 0,1, так как направление не имеет значения). Далее просчитаем каждую комбинацию для SCALE от 3 до 0,5 с шагом -0,1. Пока оставим LOC и SKEW равными 0. Таким образом, нам надо обработать следующие комбинации:

LOC SCALE SKEW KURT 03 0 о 30 2, о 30 2, о 30 2, о 30 2, о 30 2, о 30 2, о 30 2, о 30 2, о 30 2, о 30 о 3 0 1, * * * * * * * * о 2,9 0 о 2,9 0 2, * * * * * * * * о 0,5 0 0, о 0,5 0 0, Для каждой комбинации проведем тест К-С. Комбинацию, которая даст наи меньшую статистику К-С, будем считать оптимальной для параметров SKALE и KURT (на данный момент). Чтобы провести тест К-С для каждой комбинации, нам необходимо как фактическое распределение, так и теоретическое распределение (определяемое параметрами тестируемого характеристического распределения).

Мы уже знаем, как создать функцию распределения вероятности X/N, где N яв ляется общим числом сделок, а Х является рангом (от 1 до N) данной сделки.

Теперь нам надо рассчитать ФРВ для теоретического распределения при данных значениях параметров LOC, SCALE, SKEW и KURT. У нас есть характеристическая функция регулируемого распределения, она задается уравнением (4.06). Чтобы получить ФРВ из характеристической функции, необходимо найти интеграл характеристической функции. Мы обозначаем ин теграл, т.е. площадь под кривой характеристической функции в точке X, как N(X).

Таким образом, так как уравнение (4.06) дает первую производную интеграла, мы обозначим уравнение (4.06) как N'(X). В большинстве случаев вы не сможете вывести интеграл функции, даже если вы опытный математик. Поэтому вместо интегрирования функции (4.06) мы будем использовать другой метод. Этот метод потребует больших усилий, но он применим к любой функции.

Вероятность для любой точки на графике характеристической функции можно оценить, если распределение представить себе как последовательность узких прямоугольников. Тогда для любого данного прямоугольника в распределении вы можете рассчитать вероятность, ассоциированную с этим прямоугольником, как отношение суммы площадей всех прямоугольников слева от вашего прямоугольника (включая площадь вашего прямоугольника) к сумме площадей всех прямоугольников в распределении. Чем больше прямоугольников вы используете, тем более точными будут полученные вероятности. Если бы вы использовали бесконечное число прямоугольников, то ваш расчет был бы точным.

Рассмотрим процедуру поиска площадей под кривой характеристического распределения на примере. Допустим, мы хотим найти вероятности, ассоцииро ванные с каждым отрезком длиной 0,1 в интервале от -3 до +3 сигма. Отметьте, что в таблице (с. 183) рассмотрен интервал от -5 до +5 сигма. Дело в том, что луч ше выйти на 2 сигмы за ограничительные параметры (-3 и +3 сигма в нашем слу чае), чтобы получить более точные результаты. Отметьте, что Х — это число стандартных единиц, на которое мы смещены от среднего значения. Далее идут значения четырех параметров. Следующий столбец — это столбец N'(X), который отражает высоту кривой в точке Х при этих значениях параметров. N'(X) рассчитывается из уравнения (4.06). Воспользуемся уравнением (4.06). Допустим, нам надо рассчитать N'(X) для Х= -3 со значениями параметров 0,02, 2,76, 0 и 1, для LOC, SCALE, SKEW и KURT соответственно. Сначала рассчитаем показатель асимметрии для уравнения (4.06). Формула для расчета С задается уравнением (4.07):

Х LOG SCALE SKEW KURT N'(X) Ур. (4.06) Накопленная сумма N(X) -5,0 0,02 2,76 0 1,78 0,0092026741 0,0092026741 0, -4,9 0,02 2,76 0 1,78 0,0095350519 0,018737726 0, -4,8 0,02 2,76 0 1,78 0,0098865117 0,0286242377 0, -4,7 0,02 2,76 0 1,78 0,01025857 0,0388828077 0, -4,6 0,02 2,76 0 1,78 0,0106528988 0,0495357065 0, -4,5 0,02 2,76 0 1,78 0,0110713449 0,0606070514 0, -4,4 0,02 2,76 0 1,78 0,0115159524 0,0721230038 0, -4,3 0,02 2,76 0 1,78 0,0119889887 0,0841119925 0, -4,2 0,02 2,76 0 1,78 0,0124929748 0,0966049673 0, -4,1 0,02 2,76 0 1,78 0,0130307203 0,1096356876 0, -4,0 0,02 2,76 0 1,78 0,0136053639 0,1232410515 0, -3,9 0,02 2,76 0 1,78 0,0142204209 0,1374614724 0, -3,8 0,02 2,76 0 1,78 0,0148798398 0,1523413122 0, -3,7 0,02 2,76 0 1,78 0,0155880672 0,1679293795 0, -3,6 0,02 2,76 0 1,78 0,0163501266 0,184279506 0, -3,5 0,02 2,76 0 1,78 0,0171717099 0,2014512159 0, -3,4 0,02 2,76 0 1,78 0,0180592883 0,2195105042 0, -3,3 0,02 2,76 0 1,78 0,0190202443 0,2385307485 0, -3,2 0,02 2,76 0 1,78 0,0200630301 0,2585937786 0, -3,1 0,02 2,76 0 1,78 0,0211973606 0,2797911392 0, -3,0 0,02 2,76 0 1,78 0,0224344468 0,302225586 0, -2,9 0,02 2,76 0 1,78 0,0237872819 0,3260128679 0, -2,8 0,02 2,76 0 1,78 0,0252709932 0,3512838612 0, -2,7 0,02 2,76 0 1,78 0,0269032777 0,3781871389 0, -2,6 0,02 2,76 0 1,78 0,0287049446 0,4068920835 0, -2,5 0,02 2,76 0 1,78 0,0307005967 0,4375926802 0, Продолжение X LOG SCALE SKEW KURT N'(X) Ур. (4.06) Накопленная N(X) сумма -2,4 0,02 2,76 0 1,78 0,0329194911 0,4705121713 0, -2,3 0,02 2,76 0 1,78 0,0353966362 0,5059088075 0, -2,2 0,02 2,76 0 1,78 0,0381742015 0,544083009 0, -2,1 0,02 2,76 0 1,78 0,041303344 0,5853863529 0, -2,0 0,02 2,76 0 1,78 0,0448465999 0,6302329529 0, -1,9 0,02 2,76 0 1,78 0,0488810452 0,6791139981 0, -1,8 0,02 2,76 0 1,78 0,0535025185 0,7326165166 0, -1,7 0,02 2,76 0 1,78 0,0588313292 0,7914478458 0, -1,6 0,02 2,76 0 1,78 0,0650200649 0,8564679107 0, -1,5 0,02 2,76 0 1,78 0,0722644105 0,9287323213 0, -1,4 0,02 2,76 0 1,78 0,080818341 1,0095506622 0, -1,3 0,02 2,76 0 1,78 0,0910157581 1,1005664203 0, -1,2 0,02 2,76 0 1,78 0,1033017455 1,2038681658 0, -1,1 0,02 2,76 0 1,78 0,1182783502 1,322146516 0, -1,0 0,02 2,76 0 1,78 0,1367725028 1,4589190187 0, -0,9 0,02 2,76 0 1,78 0,1599377464 1,6188567651 0, -0,8 0,02 2,76 0 1,78 0,1894070001 1,8082637653 0, -0,7 0,02 2,76 0 1,78 0,2275190511 2,0357828164 0, -0,6 0,02 2,76 0 1,78 0,2776382822 2,3134210986 0, -0,5 0,02 2,76 0 1,78 0,3445412618 2,6579623604 0, -0,4 0,02 2,76 0 1,78 0,4346363128 3,0925986732 0, -0.3 0,02 2,76 0 1,78 0,5550465747 3,6476452479 0, -0,2 0,02 2,76 0 1,78 0,7084848615 4,3561301093 0, -0,1 0,02 2,76 0 1,78 0,8772840491 5,2334141584 0, 0,0 0,02 2,76 0 1,78 1 6,2334141584 0, 0,1 0,02 2,76 0 1,78 0,9363557429 7,1697699013 0, 0,2 0,02 2,76 0 1,78 0,776473162 7,9462430634 0, Продолжение X LOG SCALE SKEW KURT N'(X) Ур. (4.06) Накопленная сумма N(X) 0,3 0,02 2,76 0 1,78 0,6127219404 8,5589650037 0, 0,4 0,02 2,76 0 1,78 0,4788099392 9,0377749429 0, 0,5 0,02 2,76 0 1,78 0,377388991 9,4151639339 0, 0,6 0,02 2,76 0 1,78 0,3020623672 9,7172263011 0, 0,7 0,02 2,76 0 1,78 0,2458941852 9,9631204863 0, 0,8 0,02 2,76 0 1,78 0,2034532796 10,1665737659 0, 0,9 0,02 2,76 0 1,78 0,1708567846 10,3374305505 0, 1,0 0,02 2,76 0 1,78 0,1453993995 10,48282995 0, 1,1 0,02 2,76 0 1,78 0,1251979811 10,6080279311 0, 1,2 0,02 2,76 0 1,78 0,1089291462 10,7169570773 0, 1,3 0,02 2,76 0 1,78 0,0956499316 10,8126070089 0, 1,4 0,02 2,76 0 1,78 0,0846780659 10,8972850748 0, 1,5 0,02 2,76 0 1,78 0,0755122067 10,9727972814 0, 1,6 0,02 2,76 0 1,78 0,0677784099 11,0405756913 0, 1,7 0,02 2,76 0 1,78 0,0611937787 11,10176947 0, 1,8 0,02 2,76 0 1,78 0,0555414402 11,1573109102 0, 1,9 0,02 2,76 0 1,78 0,0506530744 11,2079639847 0, 2,0 0,02 2,76 0 1,78 0,0463965419 11,2543605266 0, 2,1 0,02 2,76 0 1,78 0,0426670018 11,2970275284 0, 2,2 0,02 2,76 0 1,78 0,0393804519 11,3364079803 0, 2,3 0,02 2,76 0 1,78 0,0364689711 11,3728769515 0, 2,4 0,02 2,76 0 1,78 0,0338771754 11,4067541269 0, 2,5 0,02 2,76 0 1,78 0,0315595472 11,4383136741 0, 2,6 0,02 2,76 0 1,78 0,0294784036 11,4677920777 0, 2,7 0,02 2,76 0 1,78 0,0276023341 11,4953944118 0, 2,8 0,02 2,76 0 1,78 0,0259049892 11,5212994011 0, 2,9 0,02 2,76 0 1,78 0,0243641331 11,5456635342 0, Продолжение X LOG SCALE SKEW KURT N'(X) Ур. (4.06) Накопленная N(X) сумма 3,0 0,02 2,76 0 1,78 0,0229608959 11,5686244301 0, 3,1 0,02 2,76 0 1,78 0,0216791802 11,5903036102 0, 3,2 0,02 2,76 0 1,78 0,0205051855 11,6108087957 0, 3,3 0,02 2,76 0 1,78 0,0194270256 11,6302358213 0, 3,4 0,02 2,76 0 1,78 0,0184344179 11,6486702392 0, 3,5 0,02 2,76 0 1,78 0,0175184304 11,6661886696 0, 3,6 0,02 2,76 0 1,78 0,0166712734 11,682859943 0, 3,7 0,02 2,76 0 1,78 0,0158861285 11,6987460714 0, 3,8 0,02 2,76 0 1,78 0,0151570063 11,7139030777 0, 3,9 0,02 2,76 0 1,78 0,014478628 11,7283817056 0, 4,0 0,02 2,76 0 1,78 0,0138463263 11,742228032 0, 4,1 0,02 2,76 0 1,78 0,0132559621 11,7554839941 0, 4,2 0,02 2,76 0 1,78 0,012703854 11,7681878481 0, 4,3 0,02 2,76 0 1,78 0,0121867187 11,7803745668 0, 4,4 0,02 2,76 0 1,78 0,0117016203 11,7920761871 0, 4,5 0,02 2,76 0 1,78 0,0112459269 11,8033221139 0, 4,6 0,02 2,76 0 1,78 0,0108172734 11,8141393873 0,996215' 4,7 0,02 2,76 0 1,78 0,0104135298 11,8245529171 0, 4,8 0,02 2,76 0 1,78 0,0100327732 11,8345856903 0, 4,9 0,02 2,76 0 1,78 0,0096732643 11,8442589547 0, 5,0 0,02 2,76 0 1,78 0,0093334265 11,8535923812 0, Затем подставляем С = 1 в уравнение (4.06):

Таким образом, в точке Х = -3 N'(X) = 0,02243444681 (отметьте, что мы рассчиты ваем значения в столбце N'(X) для каждого значения X).

Рассчитаем очередной столбец, текущую сумму N'(X), накапливающуюся с рос том X. Это сделать достаточно просто. Далее рассчитаем столбец N(X) для вероятности, ассоциированной с каждым значением Х при данных значениях параметров. Формула для расчета N(X) выглядит следующим образом:

где С = текущее количество точек X;

М = общее количество точек X.

Уравнение (4.12) означает, что при каждом изменении Х необходимо добавить текущую сумму при данном значении Х к текущей сумме предыдущего значения X, затем разделить полученную сумму на 2. Далее полученный результат следует разделить на последнее значение в столбце текущей суммы N'(X) (накопленная сумма значений N'(X)). Это даст нам вероятность для значения Х при данных значениях параметров.

Таким образом, для Х = -3 текущая сумма N(X) = 0,302225586, а для предыду щего значения Х = -3,1 текущая сумма равна 0,2797911392. Сумма двух этих вели чин равна 0,5820167252. При делении на 2 мы получаем 0,2910083626. Разделив эту величину на последнее значение в столбце накопленной суммы N'(X), равное 11,8535923812, мы получаем 0,02455022522. Это и есть вероятность N(X) при стандартном значении Х = -3.

После того как мы вычислили накопленные вероятности для каждой сделки в фактическом распределении и вероятности для каждого приращения стандартного значения в нашем характеристическом распределении, мы можем осуществить тест К-С для значений параметров характеристического распределения, которые используются в настоящий момент. Однако сначала рассмотрим два важных момента.

В примере с таблицей накопленных вероятностей, показанной ранее для нашего регулируемого распределения, мы рассчитывали вероятности с приращением стандартных значений 0,1. Это было сделано для наглядности. На практике вы можете получить большую степень точности, используя меньший шаг приращения. Приращение 0,01 в большинстве случаев является вполне приемлемым.

Скажем несколько слов о том, как для регулируемого распределения выбрать ограничительные параметры, то есть количество сигма с каждой стороны от среднего. В нашем примере мы использовали 3 сигма, но в действительности следует использовать абсолютное значение самой отдаленной точки от среднего.

Для нашего примера с 232 сделками крайнее левое (самое меньшее) стандартное значение составляет -2,96 стандартной единицы, а крайнее правое (самое большое) составляет 6,935321 стандартной единицы. Так как 6,93 больше, чем ABS(-2,96), мы должны взять 6,935321. Теперь добавим еще 2 сигма к этому значению для надежности и найдем вероятности для распределения от -8,94 до +8,94 сигма. Так как нам нужна хорошая точность, мы будем использовать приращение 0,01.

Рассчитаем вероятности для стандартных значений:

-8, -8, -8, -8, * * * +8, Последнее, что мы должны сделать, прежде чем провести тест К-С, — это ок руглить фактические стандартные значения отобранных сделок с точностью 0, (так как мы используем 0,01 в качестве шага для теоретического распределения).

Например, значение 6,935321 не будет иметь соответствующей теоретической вероятности, ассоциированной с ним, так как оно находится между значениями 6,93 и 6,94. Так как 6,94 ближе к 6,935321, мы округляем 6,935321 до 6,94. Прежде чем начать процедуру оптимизирования наших параметров регулируемого распределения путем применения теста К-С, мы должны округлить фактические отсортированные нормированные сделки в соответствии с выбранным шагом.

Вместо округления стандартных значений сделок до ближайшего десятичного Х можно использовать линейную интерполяцию по таблице накопленных веро ятностей, чтобы вычислить вероятности, соответствующие фактическим стан дартным значениям сделок. Чтобы больше узнать о линейной интерполяции, по смотрите хорошую книгу по статистике, например «Управление деньгами на то варном рынке» Фреда Гема. Другие интересные книги указаны в списке рекомендованной литературы. До настоящего момента мы оптимизировали только параметры KURT и SCALE. Может показаться, что при нормировании данных параметр LOC должен быть приравнен к 0, а параметр SCALE — к 1. Это не совсем верно, так как реальное расположение распределения может не совпадать со средним арифметическим, а оптимальное значение ширины отличаться от еди ницы. Значения KURT и SCALE сильно связаны друг с другом. Таким образом, мы сначала попытаемся приблизительно определить оптимальные значения параметров KURT и SCALE. Для наших 232 сделок получаем SCALE =2,7, а KURT =1,9. Теперь попытаемся найти наиболее подходящие значения параметров.

Этот процесс займет достаточно много времени, даже если у вас хороший компьютер. Мы проведем цикл, изменяя параметр LOC от 0,1 до -0,1 по -0,05, параметр SCALE от 2,6 до 2,8 по 0,05, параметр SKEW от 0,1 до -0,1 по -0,05 и параметр KURT от 1,86 до 1,92 по 0,02. Результаты этого цикла дают оптимальное (самое низкое значение статистики К-С) при LOC = О, SCALE = 2,8, SKEW =0 и KURT =1,86. Затем мы осуществим третий цикл. На этот раз будем просматривать LOC от 0,04 до -0,04 по -0,02, SCALE от 2,76 до 2,82 по 0,02, SKEW от 0,04 до 0,04 по -0,02 и KURT от 1,8 до 1,9 по 0,02. Результаты третьего цикла дают оптимальные значения LOC = 0,02, SCALE = 2,76, SKEW = 0 и KURT = 1,8. Мы нашли оптимальную окрестность, в которой параметры дают наилучшее приближение регулируемой характеристической функции к распределению ре альных данных. Для последнего цикла мы будем просматривать LOC от 0 до 0, по 0,01, SCALE от 2,76 до 2,73 по -0,01, SKEW от 0,01 до -0,01 и KURT от 1,8 до 1,75 по -0,01. Результаты этого последнего прохода дают следующие оптимальные параметры для наших 232 сделок: LOC = 0,02, SCALE =2,76, SKEW = 0 и KURT =1,78.

Использование параметров для поиска оптимального f Теперь, когда найдены наиболее подходящие значения параметров распределения, рассчитаем оптимальное f для этого распределения. Мы можем применить процедуру, которая была использована в предыдущей главе для поиска оптимального f при нормальном распределении. Единственное отличие состоит в том, что вероятности для каждого стандартного значения (значения X) рассчитываются с помощью уравнений (4.06) и (4.12). При нормальном распределении мы находим столбец ассоциированных вероятностей (вероятностей, соответствующих определенному стандартному значению), используя уравнение (3.21). В нашем случае, чтобы найти ассоциированные вероятности, следует выполнить процедуру, детально описанную ранее:

1. Для данного стандартного значения Х рассчитайте его соответствующее N'(X) с помощью уравнения (4.06).

2. Для каждого стандартного значения Х рассчитайте накопленную сумму зна чений N'(X), соответствующих всем предыдущим X.

3. Теперь, чтобы найти N(X), т.е. итоговую вероятность для данного X, прибавьте текущую сумму, соответствующую значению X, к текущей сумме, соответствующей предыдущему значению X. Разделите полученную величину на 2. Затем разделите полученное частное на общую сумму всех N'(X), т.е.

последнее число в столбце текущих сумм. Это новое частное является ассоциированной 1-хвостой вероятностью для данного X.

Так как теперь у нас есть метод поиска ассоциированных вероятностей для стан дартных значений Х при данном наборе значений параметров, мы можем найти оптимальное f. Процедура в точности совпадает с той, которая применяется для поиска оптимального f при нормальном распределении. Единственное отличие состоит в том, что мы рассчитываем столбец ассоциированных вероятностей дру гим способом. В нашем примере с 232 сделками значения параметров, которые получаются при самом низком значении статистики К-С, составляют 0,02, 2,76, О и 1,78 для LOC, SCALE, SKEW и KURT соответственно. Мы получили эти значения параметров, используя процедуру оптимизации, описанную в данной главе. Статистика К-С == 0,0835529 (это означает, что в своей наихудшей точке два распределения удалены на 8,35529%) при уровне значимости 7,8384%.

Рисунок 4-10 показывает функцию распределения для тех значений параметров, которые наилучшим образом подходят для наших 232 сделок. Если мы возьмем полученные параметры и найдем оптимальное f по этому распределению, ограничивая распределение +3 и -3 сигма, используя 100 равноотстоящих точек данных, то получим f= 0,206, или 1 контракт на каждые 23 783,17 доллара.

Сравните это с эмпирическим методом, который покажет, что оптимальный рост достигается при 1 контракте на каждые 7918,04 доллара на балансе счета. Этот результат мы получаем, если ограничиваем распределение 3 сигма с каждой стороны от среднего. В действительности, в эмпирическом потоке сделок у нас был проигрыш наихудшего случая 2,96 сигма и выигрыш наилучшего случая 6, сигма. Теперь, если мы вернемся и ограничим распределение 2,96 сигма слева от среднего и 6,94 сигма справа (и на этот раз будем использовать 300 равноотсто ящих точек данных), то получим оптимальное f = 0,954, или 1 контракт на каждые 5062,71 доллара на балансе счета. Почему оно отличается от эмпирического опти мального f= 7918,04?

Проблема состоит в «грубости» фактического распределения. Вспомните, что уровень значимости наших наилучшим образом подходящих параметров был только 7,8384%. Давайте возьмем распределение 232 сделок и поместим в 12 ячеек от -3 до +3 сигма.

Ячейки Количество сделок -3,0 -2,5 -2,5 -2,0 -2,0 -1,5 -1,5 -1,0 -1,0 -0,5,sr„. -0,5 0,0 ь 0,5 -' 0, 0,5 1,0 1,0 1,5 1,5 2,0 2,0 2,5 2,5 3,0 Отметьте, что на хвостах распределения находятся пробелы, т.е. области, или ячейки, где нет эмпирических данных. Эти области сглаживаются, когда мы приспосабливаем наше регулируемое распределение к данным, и именно эти сглаженные области вызывают различие между параметрическим и эмпирическим оптимальным f. Почему же наше характеристическое распределение при всех возможностях регулировки его формы не очень хорошо приближено к фактическому распределению? Причина состоит в том, что наблюдаемое распределение имеет слишком много точек перегиба. Параболу можно направить ветвями вверх или вниз. Однако вдоль всей параболы направление вогнутости или выпуклости не изменяется. В точке перегиба направление вогнутости изменяется.

Парабола имеет 0 точек перегиба, Рисунок 4-10 Регулируемое распределение для 232 сделок Рисунок 4-11 Точки перегиба колоколообразного распределения так как направление вогнутости никогда не изменяется. Объект, имеющий форму буквы S, лежащий на боку, имеет одну точку перегиба, т.е. точку, где вогнутость изменяется. Рисунок 4-11 показывает нормальное распределение. Отметьте, что в колоколообразной кривой, такой как нормальное распределение, есть две точки перегиба. В зависимости от значения SCALE наше регулируемое распределение может иметь ноль точек перегиба (если SCALE очень низкое) или две точки перегиба. Причина, по которой наше регулируемое распределение не очень хорошо описывает фактическое распределение сделок, состоит в том, что реальное распределение имеет слишком много точек перегиба. Означает ли это, что полученное характеристическое распределение неверно? Скорее всего нет. При желании мы могли бы создать функцию распределения, которая имела бы больше двух точек перегиба. Такую функцию можно было бы лучше подогнать к реальному распределению. Если бы мы создали функцию распределения, которая допускает неограниченное количество точек перегиба, то мы бы точно подогнали ее к наблюдаемому распределению. Оптимальное f, полученное с помощью такой кривой, практически совпало бы с эмпирическим. Однако чем больше точек перегиба нам пришлось бы добавить к функции распределения, тем менее надежной она была бы (т.е. она хуже представляла бы будущие сделки). Мы не пытаемся в точности подогнать параметрическое IK наблюдаемому, а стараемся лишь определить, как распределяются наблюдаемые данные, чтобы можно было предсказать с большой уверенностью будущее оптимальное 1(если данные будут распределены так же, как в прошлом). В регулируемом распределении, подо гнанном к реальным сделкам, удалены ложные точки перегиба.

Поясним вышесказанное на примере. Предположим, мы используем доску Галтона. Мы знаем, что асимптотически распределение шариков, падающих через доску, будет нормальным. Однако мы собираемся бросить только 4 шарика.

Можем ли мы ожидать, что результаты бросков 4 шариков будут распределены нормально? Как насчет 5 шариков? 50 шариков? В асимптотическом смысле мы ожидаем, что наблюдаемое распределение будет ближе к нормальному при увеличении числа сделок. Подгонка теоретического распределения к каждой точке перегиба наблюдаемого распределения не даст нам большую степень точности в будущем. При большом количестве сделок мы можем ожидать, что наблюдаемое распределение будет сходиться с ожидаемым и многие точки перегиба будут заполнены сделками, когда их число стремится к бесконечности. Если наши теоретические параметры точно отражают распределение реальных сделок, то оптимальное f, полученное на основе теоретического распределения, при будущей последовательности сделок будет точнее, чем оптимальное f, рассчитанное эмпирически из прошлых сделок. Другими словами, если наши 232 сделки представляют распределение сделок в будущем, тогда мы можем ожидать, что распределение сделок в будущем будет ближе к нашему «настроенному» теоретическому распределению, чем к наблюдаемому, с его многочисленными точками перегиба и «зашумленностью» из-за конечного количества сделок. Таким образом, мы можем ожидать, что будущее оптимальное f будет больше похоже на оптимальное f, полученное из теоретического распределения, чем на оптимальное f, полученное эмпирически из наблюдаемого распределения.

Итак, лучше всего в этом случае использовать не эмпирическое, а пара метрическое оптимальное f. Ситуация аналогична рассмотренному случаю с бросками монеты в предыдущей главе. Если мы ожидаем 60% выигрышей в игре 1:1, то оптимальное f= 0,2. Однако если бы у нас были только эмпирические данные о последних 20 бросках, 11 из которых были выигрышными, наше оптимальное f составило бы 0,1. Мы исходим из того, что параметрическое оптимальное f ($5062,71 в этом случае) верно, так как оно оптимально для функ ции, которая «генерирует» сделки. Как и в случае только что упомянутой игры с броском монеты, мы допускаем, что оптимальное f для следующей сделки опре деляется параметрической генерирующей функцией, даже если параметрическое f отличается от эмпирического оптимального f.

Очевидно, что ограничительные параметры оказывают большое влияние на оптимальное f. Каким образом выбирать эти ограничительные параметры?

Посмотрим, что происходит, когда мы отодвигаем верхнюю границу. Следующая таблица составлена для нижнего предела 3 сигма с использованием равноотстоящих точек данных и оптимальных параметров для 232 сделок:

Верхняя граница ff$ 3 Sigmas 0,206 $23783, 4 Sigmas 0,588 $8332, 5 Sigmas 0,784 $6249, 6 Sigmas 0,887 $5523, 7 Sigmas 0,938 $5223, 8 Sigmas 0,963 $5087, * * * * * * 100 Sigmas 0,999 $4904, Отметьте, что при постоянной нижней границе, чем выше мы отодвигаем верхнюю границу, тем ближе оптимальное f к 1. Таким образом, чем больше мы отодвигаем верхнюю границу, тем ближе оптимальное f в долларах будет к нижней границе (ожидаемый проигрыш худшего случая). В том случае, когда наша нижняя граница находится на -3 сигма, чем больше мы отодвигаем верхнюю границу, тем ближе в пределе оптимальное f в долларах будет к нижней границе, т.е. к $330,13 -(1743,23 * 3) = = -$4899,56. Посмотрите, что происходит, когда верхняя граница не меняется (3 сигма), а мы отодвигаем нижнюю границу Достаточно быстро арифметическое математическое ожидание такого процесса оказывается отрицательным. Это происходит потому, что более 50% площади под характеристической функцией находится слева от вертикальной оси.

Следовательно, когда мы отодвигаем нижний ограничительный параметр, оптимальное f стремится к нулю. Теперь посмотрим, что произойдет, если мы одновременно начнем отодвигать оба ограничительных параметра. Здесь мы используем набор оптимальных параметров 0,02, 2,76, 0 и 1,78 для распределения 232 сделок и 100 равноотстоящих точек данных:

Верхняя и нижняя граница F f$ 3 Sigmas 0,206 $23783, 4 Sigmas 0,158 $42 040, 5 Sigmas 0,126 $66 550, 6 Sigmas 0,104 $97 387, * * * * * * 100 Sigmas 0,053 $322625, Отметьте, что оптимальное f приближается к 0, когда мы отодвигаем оба ограни чительных параметра. Более того, так как проигрыш наихудшего случая увеличи вается и делится на все меньшее оптимальное f, наше f$, т.е. сумма финансирова ния 1 единицы, также приближается к бесконечности.

Проблему наилучшего выбора ограничительных параметров можно сфор мулировать в виде вопроса: где могут произойти в будущем наилучшие и наи худшие сделки (когда мы будем торговать в этой рыночной системе)? Хвосты распределения в действительности стремятся к плюс и минус бесконечности, и нам следует финансировать каждый контракт на бесконечно большую сумму (как в последнем примере, где мы раздвигали обе границы). Конечно, если мы собираемся торговать бесконечно долгое время, наше оптимальное f в долларах будет бесконечно большим. Но мы не собираемся торговать в этой рыночной системе вечно. Оптимальное f, при котором мы собираемся торговать в этой рыночной системе, является функцией предполагаемых наилучших и наихудших сделок. Вспомните, если мы бросим монету 100 раз и запишем, какой будет самая длинная полоса решек подряд, а затем бросим монету еще 100 раз, то полоса ре шек после 200 бросков будет скорее всего больше, чем после 100 бросков. Таким же образом, если проигрыш наихудшего случая за нашу историю 232 сделок равнялся 2,96 сигма (для удобства возьмем 3 сигма), тогда в будущем мы должны ожидать проигрыш больше 3 сигма. Поэтому вместо того, чтобы ограничить наше распределение прошлой историей сделок (-2,96 и +6,94 сигма), мы ограничим его 4 и +6,94 сигма. Нам, вероятно, следует ожидать, что в будущем именно верхняя, а не нижняя граница будет нарушена. Однако это обстоятельство мы не будем принимать в расчет по нескольким причинам. Первая состоит в том, что торговые системы в будущем ухудшают свою результативность по сравнению с работой на исторических данных, даже если они не используют оптимизируемых параметров.

Все сводится к принципу, что эффективность механических торговых систем постепенно снижается. Во-вторых, тот факт, что мы платим меньшую цену за ошибку в оптимальном f при смещении влево, а не вправо от пика кривой f, предполагает, что следует быть более консервативными в прогнозах на будущее.

Мы будем рассчитывать параметрическое оптимальное f при ограничительных параметрах -4 и +6,94 сигма, используя 300 равноотстоящих точек данных. Однако при расчете вероятностей для каждой из 300 равноотстоящих ячеек данных важно, чтобы мы рассмотрели распределение на 2 сигмы до и после выбранных ограничительных параметров. Поэтому мы будем определять ассоциированные вероятности, используя ячейки в интервале от -6 до +8,94 сигма, даже если реальный интервал -4 — +6,94 сигма. Таким образом, мы увеличим точность результатов. Использование оптимальных параметров 0,02, 2,76, 0 и 1,78 теперь даст нам оптимальное f =0,837, или 1 контракт на каждые 7936,41 доллара. Пока ограничительные параметры не нарушаются, наша модель точна для выбранных границ. Пока мы не ожидаем проигрыша больше 4 сигма ($330,13 -(1743,23 * 4) = $6642,79) или прибыли больше 6,94 сигма ($330,13 + + (1743,23 * 6,94) = $ 428,15), можно считать, что границы распределения будущих сделок выбраны точно. Возможное расхождение между созданной моделью и реальным распределением является слабым местом такого подхода, то есть оптимальное f, полученное из модели, не обязательно будет оптимальным. Если наши выбранные параметры будут нарушены в будущем, f может перестать быть оптимальным.

Этот недостаток можно устранить с помощью опционов, которые позволяют ограничить возможный проигрыш заданной суммой. Коль скоро мы обсуждаем слабость данного метода, необходимо указать на последний его недостаток.

Следует иметь в виду, что реальное распределение торговых прибылей и убытков является распределением, где параметры постоянно изменяются, хотя и медленно.

Следует периодически повторять настройку по торговым прибылям и убыткам рыночной системы, чтобы отслеживать эту динамику.

Проведение тестов «что если» После того как найдено параметрическое оптимальное f, можно реализовывать сценарии «что если» с помощью полученной функции распределения. Для этого нужно варьировать параметры функции распределения LOC, SCALE, SKEW и KURT для моделирования различных ожидаемых результатов (различных рас пределений, которые могут быть в будущем). Мы знаем, как применять процедуру растяжения и сжатия в нормальном распределении, и похожим образом можем работать с параметрами LOC, SCALE, SKEW и KURT регулируемого распределения.

Рисунок 4-12 Изменение параметра расположения распределения Сценарии «что если» при параметрическом подходе помогают смоделировать из менения фактического распределения торговых P&L. Параметрические методы позволяют увидеть воздействие изменений на распределение фактических торго вых прибылей и убытков до того, как они произойдут.

Когда вы работаете с параметрами, следует помнить о важной детали. При поиске оптимального f вместо того, чтобы изменять LOC, т.е. расположение распределе ния, лучше изменять долларовую арифметическую среднюю сделку, используемую в качестве входного данного. Это видно из рисунка 4-12. Отметьте (см. рисунок 4-12), что изменение параметра расположения LOC передвигает распределение вправо или влево в «окне» ограничительных параметров, но сами ограничительные параметры при этом не двигаются. Таким образом, изменение параметра LOC также затрагивает количество равноотстоящих точек данных слева и справа от моды распределения. Если изменить фактическое среднее арифметическое (или использовать переменную сжатия при поиске f в нормальном распределении), «окно» ограничительных параметров передвинется. Когда вы изменяете арифметическую среднюю сделку или изменяете переменную сжатия в механизме нормального распределения, у вас остается то же число равноотстоящих точек данных справа и слева от моды распределения.

Приведение f к текущим ценам В методе, описанном в этой главе, были использованы неприведенные данные. Мы можем использовать тот же подход для приведенных данных. Если необходимо определить приведенное параметрическое оптимальное f, то следует преобразовать необработанные торговые прибыли и убытки в процентные повышения и понижения, основываясь на уравнениях с (2.10а) по (2.10в). Затем надо преобразовать полученные процентные прибыли и убытки, умножив их на текущую цену базового инструмента. Например, P&L номер 1 составляет 0,18.

Допустим, что цена входа в этой сделке равна 100,50, тогда процентное повышение для этой сделки равно 0,18/100,50=0,001791044776. Теперь допустим, что текущая цена базового инструмента равна 112,00. Умножив 0,001791044776 на 112,00, получим приведенное значение P&L, равное 0,2005970149. Если мы хотим использовать приведенные данные, то следует провести аналогичную операцию со всеми 232 торговыми прибылями и убытками. Затем следует рассчитать среднее арифметическое и стандартное отклонение по приведенным сделкам и использовать уравнение (3.16) для нормирования данных. Далее необходимо найти набор оптимальных параметров LOC, SCALE, SKEW и KURT по приведенным данным так же, как было показано в этой главе для неприведенных данных.

Процедура определения оптимального f, среднего геометрического и TWR аналогична уже рассмотренной нами. Побочные продукты: средняя геометрическая сделка, средняя арифметическая сделка и порог геометрической торговли — действительны только для текущей цены базового инструмента. Если цена базового инструмента изменится, расчет следует повторить, вернувшись к первому шагу, умножив процентные прибыли и убытки на новую цену базового инструмента. Когда вы перейдете к этой процедуре с другой ценой базового инструмента, то получите такое же оптимальное f, среднее геометрическое и TWR.

Однако средняя арифметическая сделка, средняя геометрическая сделка и порог геометрической торговли будут другими в зависимости от новой цены базового инструмента.

Количество контрактов для торговли, определяемое уравнением (3.34), также должно измениться. Ассоциированное P&L наихудшего случая (переменная W из уравнения (3.35)) будет другим в уравнении (3.34) в результате изменений, выз ванных приведением данных к другой текущей цене.

Оптимальное F для других распределений и настраиваемых кривых Существует много других способов, с помощью которых можно определить параметрическое оптимальное f. В предыдущей главе мы рассмотрели процедуру поиска оптимального f для нормально распределенных данных. Итак, у нас есть процедура, которая дает оптимальное f для любого нормально распределенного явления. Та же процедура используется для поиска оптимального/в любом распределении, если существует функция распределения (подобные функции описаны для многих других распространенных распределений в приложении В).

Когда функции распределения не существует (т.е. когда функция плотности вероятности не интегрируется), оптимальное f можно найти с помощью численного метода, описанного в этой главе, приблизительно рассчитав функцию распределения.

Данная глава посвящена моделированию фактического распределения сделок с помощью регулируемого распределения, то есть поиску функции и ее подходящих параметров, которые моделируют фактическую функцию плотности вероятности торговых P&L с двумя точками перегиба. Вы можете использовать уже известные функции и методы, например, полиномиальную интерполяцию или эк страполяцию, интерполяцию и экстраполяцию рациональной функции (частные многочленов), или использовать сплайн-интерполяцию. После того как теорети ческая функция найдена, можно определить ассоциированные вероятности тем же методом расчета интеграла, который использовался при поиске ассоциированных вероятностей регулируемого распределения, или рассчитать интеграл с помощью методов математического анализа. Одна из целей этой книги — позволить трейдерам, использующим немеханические системы, применять те же методы управления счетом, что и трейдерам, использующим механические системы.

Регулируемое распределение требует расчета параметров, они относятся к первым четырем моментам распределения. Именно эти моменты — расположение, масштаб, асимметрия и эксцесс — описывают распределение. Таким образом, кто либо, торгующий по немеханическому методу, например по волнам Эллиотта, может рассчитать параметры и получить оптимальное f и побочные продукты.

Наличие прошлой истории сделок не является необходимым условием для расчета данных параметров. Если бы вы использовали другие упомянутые выше методы подгонки, вам также не обязательно было бы знать исторические данные, но значения параметров такой подгонки не обязательно относились бы к моментам распределения. Эти методы могут лишить вас возможности посмотреть, что про изойдет, если увеличится эксцесс или изменится асимметрия, изменится масштаб и т.д. Наше регулируемое распределение является логичным выбором теоретической функции, которая хорошо описывает фактическое распределение, так как параметры не только задают моменты распределения, они дают нам контроль над этими моментами при прогнозировании будущих изменений в распределении. Более того, рассчитать параметры рассматриваемого здесь регулируемого распределения легче, чем подогнать какую-либо произвольную функцию.

Планирование сценария Специалисты, которые в силу своей профессии занимаются прогнозированием (экономисты, аналитики фондового рынка, метеорологи, правительственные чиновники и т.д.), довольно часто ошибаются, но надо признать, что большинство решений, которые человек должен принять в жизни, обычно требуют прогноза.

Здесь есть две ловушки. Во-первых, люди делают слишком оптимистичные предположения о будущем. Большинство из нас уверены, что в этом месяце мы скорее выиграем в лотерею, чем погибнем в автокатастрофе, даже если веро ятность последнего выше. Это верно не только на уровне отдельного лица, но и на уровне группы. Когда люди работают вместе, они стремятся видеть бла гоприятный результат как наиболее вероятный результат (иначе не было бы смысла работать, пока, конечно, все мы не стали автоматами, безрассудно надрывающимися на «тонущих кораблях»).

Вторая и более пагубная ловушка состоит в том, что мы делаем прямые про гнозы, например пытаемся предсказать цену галлона бензина через два года или пытаемся предсказать, что произойдет с нашей карьерой, кто будет следующим президентом, каким будет следующий стиль, и так далее. Что бы мы ни говорили о будущем, мы стремимся думать о единственном, наиболее вероятном результате.

Таким образом, когда необходимо принять решение или самостоятельно, или коллективно, мы принимаем его, основываясь на том, что прогноз есть един ственный наиболее вероятный результат. В итоге, мы часто получаем неприятные сюрпризы.

Планирование сценария отчасти решает эту проблему. Сценарий просто яв ляется возможным прогнозом, одним из путей, по которому могут развиваться события. Планирование сценария предполагает набор сценариев для покрытия возможного спектра исходов. Конечно, полный спектр никогда не будет получен, но вы можете рассмотреть столько сценариев, сколько сочтете нужным. Таким образом, в противоположность прямому прогнозу наиболее вероятного результата вы можете подготовиться к будущему. Более того, планирование сценария подготовит вас к тому, что может быть в противном случае неожиданным событием.

Допустим, вы занимаетесь долгосрочным планированием для компании, которая производит некий продукт. Вместо того, чтобы сделать один наиболее вероятный прямой прогноз, используйте метод планирования сценария. Методом «мозгового штурма» вместе с коллегами определите возможные пути развития событий. Что будет, если вы не сможете получить достаточно сырья, чтобы произвести этот продукт? Как изменится ситуация, если один из ваших конкурентов обанкротится? Как будут развиваться события, если на рынке по явится новый конкурент? Что произойдет, если вы серьезно недооцените спрос на этот продукт? Что будет, если где-либо начнется война? А если начнется ядерная война? Так как каждый сценарий возможен, его нужно рассматривать серьезно.

Теперь надо понять, что вы будете делать после того, как определите эти сценарии. Вы должны определить цель, которую хотите достичь при том или ином сценарии. В зависимости от сценария цель не обязательно должна быть положи тельной. Например, при пессимистическом сценарии это могут быть просто ремонтно-восстановительные работы на предприятии. После того как вы опреде лите цель для данного сценария, надо составить план на случай непредвиденных ситуаций, относящихся к этому сценарию, для достижения необходимой цели.

Например, как уже было сказано, при невероятно мрачном сценарии вашей целью могут быть ремонтно-восстановительные работы, и вам надо иметь план, чтобы минимизировать ущерб. Помимо всего прочего, планирование сценария даст вам алгоритм, которому надо следовать, если определенный сценарий реализуется.

Существует тесная связь между планированием сценария и оптимальным f.

Оптимальное f позволяет разместить оптимальное количество ресурсов при определенном наборе возможных сценариев. На самом деле, реализуется только один сценарий, даже если мы планируем их несколько. Планирование сценария ставит нас в ситуацию, когда необходимо принять решение, какое количество ресурсов размещать сегодня при возможных сценариях на завтра. Эта количественная оценка последствий — поистине «сердце» планирования сценария.

Чтобы определить, сколько ресурсов разместить при наличии определенного набора сценариев, мы можем использовать еще один параметрический метод поиска оптимального f. Сначала следует описать каждый сценарий. Далее мы должны оценить вероятность (это число между 0 и 1) реализации каждого сце нария. Сценарии с вероятностью 0 мы не будем рассматривать. Отметьте, что вероятность каждого сценария уникальна. Допустим, вы принимаете решения в производственной корпорации АБВ. Два сценария (из нескольких) выглядят следующим образом. При одном сценарии корпорация АБВ подает документы на банкротство с вероятностью 0,15, в другом сценарии АБВ уходит с рынка из-за напряженной конкуренции с иностранными корпорациями с вероятностью 0,07.

Теперь мы должны понять, включает ли первый сценарий заявление о банкротстве из-за второго сценария, т.е. напряженной конкуренции. Если это так. то вероятность первого сценария не учитывает вероятность второго сценария, и мы должны уменьшить вероятность первого сценария до 0,08 (0,15 -- 0,07). Отметьте также, что уникальность вероятности важна для каждого сценария, чтобы сумма вероятностей всех рассматриваемых сценариев была равна в точности 1, а не 1, или 0,99.

Для каждого сценария мы определяем вероятность его осуществления. Следует также определить конечный результат, то есть численное значение. Оно может быть в долларах или лотах — в чем угодно. Однако ваши выходные данные должны быть в тех же единицах, что и входные данные. Чтобы использовать этот метод, вы должны обязательно иметь, по крайней мере, один сценарий с отрицательным результатом. Если вы хотите знать размер ресурса, который следует разместить сегодня при возможных сценариях на завтра, и не имеете отрицательного сценария, тогда следует разместить 100% этого ресурса. Без сценария с отрицательным результатом маловероятно, что данный набор сценариев реалистичен.

Последнее условие использования этого метода состоит в том, что математи ческое ожидание, сумма всех результатов, умноженных на их соответствующие вероятности, должно быть больше нуля.

где Р = вероятность сценария i;

А = результат сценария i;

N == общее число рассматриваемых сценариев.

Если математическое ожидание равно нулю или отрицательное, метод нельзя использовать. Это не означает, что нельзя использовать само планирование сценария. Можно и нужно. Однако оптимальное f может быть получено только в том случае, если математическое ожидание больше нуля. Когда математическое ожидание равно нулю или отрицательное, мы не должны размещать ресурсы.

И наконец, вы должны рассмотреть максимально возможный спектр резуль татов. Другими словами, следует рассмотреть 99% возможных исходов. Многие сценарии можно сделать шире, так что вам не надо будет расписывать 10 000 сце нариев, чтобы охватить 99% спектра. При расширении сценариев не следует слишком упрощать ситуацию, выбрав только три сценария: оптимистический, пессимистический и нейтральный. В этом случае полученные ответы будут слиш ком грубы, чтобы иметь какую-либо практическую ценность. Захотите ли вы ис кать оптимальное f для торговой системы по трем сделкам?

Какое количество сценариев оптимально? Используйте то количество, с ко торым вы справитесь. Здесь хорошим помощником будет компьютер. Допустим, речь идет о компании АБВ и о размещении ее нового продукта на рынке отсталой далекой страны. Рассмотрим пять возможных сценариев (в действительности сценариев должно быть больше, но мы возьмем пять для примера). Эти пять сценариев отражают то, что может произойти в данной стране в будущем, — то есть вероятность определенных событий и прибыль или убыток от инвестирования.

Сценарий Вероятность Результат Война 0,1 -$500 Кризис 0,2 -$200 Застой 0,2 Мир 0,45 $500 Процветание 0,05 $ Сумма 1, Таким образом, сумма вероятностей равна 1. Обратите внимание, что у нас есть сценарий с отрицательным результатом, но математическое ожидание больше нуля:

(0,1 * -$500 000) + (0,2 * -$200 000) +... = $185 С таким набором сценариев мы можем использовать данный метод. Отметьте, что если бы мы использовали метод наиболее вероятного результата, то пришли бы к заключению, что в этой стране скорее всего будет мир, и действовали бы, исходя из этой единственной возможности, только расплывчато осознавая наличие других исходов.

Рассчитаем оптимальное f. Как мы уже знаем, оптимальное f (это число между О и 1) максимизирует среднее геометрическое:

поэтому Далее, мы можем рассчитать фактическое TWR:

(4.17) TWR= Среднее геометрическое^X, где N= число сценариев;

TWR= относительный конечный капитал;

HPR= прибыль за период удержания позиции для сценария i;

А = результат сценария i;

Р.= вероятность сценария i;

W= наихудший результат среди всех сценариев N;

Х= число, характеризующее повторение этого сценария, когда мы инвестируем Х раз.

TWR, полученное из уравнения (4.14), является промежуточным значением для расчета среднего геометрического. После того как мы найдем среднее геометри ческое, фактическое TWR можно получить с помощью уравнения (4.17).

Мы можем произвести расчеты по этим уравнениям следующим образом. Сначала выберем схему оптимизации, то есть способ поиска f, максимизирующего уравнение. Можно сделать это с помощью подбора Ют 0,01 до 1, используя метол итераций или параболическую интерполяцию. Затем мы должны определить наихудший возможный результат для всех рассматриваемых сценариев независимо от того, насколько малы вероятности подобных сценариев. В примере с корпорацией АБВ наихудшие ожидаемые потери — это -500 000 долларов. Теперь для каждого сценария мы должны сначала разделить наихудший возможный результат на отрицательное f. В примере с корпорацией АБВ мы собираемся просмотреть значения Ют 0,01 до 1. Начнем со значения f=0,01. Теперь, если мы разделим наихудший возможный результат рассматриваемых сценариев на отрицательное значение f, то получим:

-$500 000 / -0,01 = $50 000 Для каждого сценария разделим его результат на полученное только что значение.

Так как исход первого сценария является наихудшим с убытком 500 000 долларов, то:

-$500 000 / $50 000 000 = -0, Теперь прибавим это значение к 1:

1 + (-0,01) = 0, Наконец, возведем полученный ответ в степень вероятности осуществления данного сценария (в нашем примере 0,1):

0,99^0,1=0, Затем перейдем к следующему сценарию под названием «Кризис» с вероятностью 0,2 проигрыша 200 000 долларов. Наш результат наихудшего случая все еще -$ 000. Значение f, с которым мы работаем, по-прежнему 0,01, поэтому число, на которое надо разделить результат этого сценария, составляет 50 000 000 долларов:

-$200 000/$50 000 000 = -0, Проведем дальнейшие вычисления для получения HPR:

1 + (-0,004) = 0,996 0,99^0,2 = 0, Если мы рассмотрим остальные сценарии при тестируемом значении f=0,01, то найдем три значения HPR, соответствующие последним 3 сценариям:

Застой 1, Мир 1, Процветание 1, После того как найдены все HPR для данного значения f, необходимо перемно жить полученные HPR:

0,9989954713*0,9991987169*1,0*1,004487689 * 1,000990622=1, Мы получили промежуточное TWR = 1,003667853. Следующим шагом будет воз ведение этого значения в степень, равную единице, деленной на сумму вероятно стей. Так как сумма вероятностей составляет 1, то, чтобы получить среднее геометрическое, TWR возведем в степень 1. Таким образом, среднее геометрическое равно в этом случае TWR, то есть 1,003667853. Если, однако, убрать ограничение. что каждый сценарий должен иметь уникальную вероятность, то можно получить сумму вероятностей больше 1. В таком случае, чтобы получить среднее геометрическое, надо возвести TWR в степень, равную единице, деленной на эту сумму вероятностей.

Ответ, полученный в нашем примере, является средним геометрическим.

соответствующим значению f= 0,01. Теперь перейдем к значению f= 0,02 и по вторим весь процесс, пока не найдем среднее геометрическое, соответствующее этому f. Мы будем продолжать, пока не дойдем до такого значения f, которое даст наивысшее среднее геометрическое.

В нашем примере наивысшее среднее геометрическое достигается при f=0,57 и равно 1,1106. Разделив возможный результат наихудшего сценария (-$500 000) на отрицательное оптимальное f, мы получим 877 192,35 доллара. Другими словами, если корпорации АБВ надо разместить на рынке новый продукт в этой далекой стране, следует инвестировать именно эту сумму. С течением времени и развитием событий, когда изменятся возможные исходы и вероятности, изменится также и сумма f. Чем чаще корпорация АБВ будет учитывать эти изменения, тем более правильными будут ее решения. Отметьте. что если корпорация АБВ инвестирует в этот проект меньше 877 192,35 доллара. тогда она находится левее пика кривой f.

Это аналогично ситуации, когда у трейдера открыто слишком мало контрактов (по сравнению с оптимальным f). Если корпорация АБВ вкладывает в проект большую сумму, это аналогично ситуации, когда у трейдера открыто слишком много позиций.

Количество, рассмотренное здесь, является количеством денег, но это могут быть не только деньги, и метод будет работать. Данный подход можно ис пользовать для любого количественного решения в среде благоприятной нео пределенности.

Если вы создадите различные сценарии для фондового рынка, оптимальное f.

полученное с помощью этого метода, даст вам процент средств, которые надо в данный момент инвестировать в акции. Например, если f= 0,65, то 65% вашего баланса должно быть на рынке, а оставшиеся 35%, например, в деньгах. Этот под ход даст вам наибольший геометрический рост капитала. Конечно, результат будет зависеть от того, какие входные данные вы использовали в системе (сценарии. их вероятности осуществления, выигрыши и проигрыши, издержки). Все сказанное ранее об оптимальном f применимо здесь, и это означает также, что ожидаемые проигрыши могут достигать 100%. Если вы осуществляете планирование сценария для размещения активов, то должны ожидать, что около 100% активов.

размещенных в соответствии с рассматриваемым сценарием, могут быть потеряны в какое-либо время в будущем. Например, вы используете данный метод, чтобы определить сумму средств, предназначенных для инвестирования в акции. До пустим, вы приходите к выводу, что 65% средств должно быть инвестировано в акции, а оставшиеся 35% в безрисковые активы. Следует ожидать, что проигрыш в будущем может достичь 100% суммы, размещенной на фондовом рынке. Другими словами, вы должны быть готовы, что в какой-либо точке в будущем почти 100% активов от ваших 65%, размещенных в акции, будут проиграны. Однако именно таким образом вы достигнете максимального геометрического роста. Ту же процедуру можно использовать для альтернативного параметрического метода определения оптимального f в торговле. Допустим, вы принимаете торговые решения, основываясь на фундаментальных данных. Вы намечаете различные сценарии, которые могут произойти в процессе торговли. Чем больше сценариев и чем точнее сценарии, тем лучше будут полученные результаты. Предположим, вы решили купить муниципальные облигации, но при этом не планируете удерживать их до срока погашения. Вы можете рассмотреть множество сценариев будущих событий и использовать эти сценарии для определения оптимального размера инвестиций.

Концепцию планирования сценария для определения оптимального f можно использовать во многих областях: от военных стратегий до определения оптималь ного уровня участия в подписке на акции или оптимальной предоплаты за дом.

Этот метод, вероятно, является лучшим и уже точно самым легким для тех, кто не использует механические решения при входе и выходе с рынка. Трейдеры, которые торгуют по фундаментальным данным, графикам, волнам Эллиотта или с помощью любого другого метода, требующего субъективного суждения, могут найти оптимальные f с помощью этого подхода — он намного проще, чем поиск значений параметров распределения. Арифметическое среднее HPR группы сценариев можно рассчитать следующим образом:

где N = число сценариев;

А = результат (выигрыш или проигрыш) сценария i;

Р = вероятность сценария i;

W= наихудший результат среди всех сценариев.

AHPR будет важно позднее, при поиске эффективной границы совокупности не скольких рыночных систем, когда необходимо будет определить ожидаемую при быль (арифметическую) данной рыночной системы. Эта ожидаемая прибыль равна AHPR-1. Рассмотренный метод не обязательно должен быть основан на параметрическом подходе. Возможен и эмпирический подход. Другими словами, мы можем взять отчет о сделках данной рыночной системы и использовать каждую из этих сделок в качестве сценария, который может произойти в будущем.

Величина прибыли или убытка будет выходным результатом данного сценария. В этом случае каждый сценарий (сделка) имеет равную вероятность осуществления — 1/N, где N — общее число сделок (сценариев). В результате мы получим эмпирическое оптимальное f. Когда есть несколько решений на основе нескольких сценариев, выбор того. чье среднее геометрическое, соответствующее оптимальному f, самое большое. максимизирует решение в асимптотическом смысле. Зачастую это будет происходить вопреки общепринятым правилам принятия решения, таким как Правило Гурвица, максимакс, минимакс, минимаксная потеря (minimax regret) и наивысшее математическое ожидание.

Предположим, мы должны выбрать одно их двух возможных решений, которые назовем «белым» и «черным». Белое решение представляет следующие возможные сценарии:

Белое решение Сценарий Вероятность Результат А 0,3 - В 0,4 С 0,3 Математическое ожидание = $3, Оптимальное f = 0, Среднее геометрическое = 1, Черное решение представляет следующие сценарии:

Черное решение Сценарий Вероятность Результат А 0,3 - В 0,4 С 0,15 D0,15 Математическое ожидание = $2, Оптимальное f=0, Среднее геометрическое = 1, Многие выбрали бы белое решение, так как оно имеет большее математическое ожидание. При белом решении вы можете ожидать «в среднем» выигрыш в доллара против выигрыша черного решения в 2,90 доллара. Однако выбор черного решения будет более правильным, так как оно дает наибольшее среднее геометрическое. При черном решении можно ожидать «в среднем» выигрыш в 4,53% (1,0453 - 1) против выигрыша белого решения в 1,23%. При реинвестировании черное решение, в среднем, выиграет в три раза больше, чем белое решение! Вы можете возразить, отметив, что мы не реинвестируем по тому же сценарию каждый раз, и можно добиться большего, если всегда выбирать наивысшее арифметическое математическое ожидание для каждого представленного набора. Мы будем принимать решение, основываясь на большем арифметическом математическом ожидании, только в том случае, если не собираемся реинвестировать вообще. Но так как почти всегда деньги, которыми мы рискуем сегодня, будут снова с риском вложены в будущем, а деньги, выигранные или проигранные в прошлом, влияют на то, чем мы можем рисковать сегодня (среда геометрических следствий), для максимизации долгосрочного роста капитала мы должны принимать решения, исходя из среднего геометрического.

Даже если сценарии, которые будут представлены завтра, не будут такими же, как сегодня, используя наибольшее среднее геометрическое, мы всегда максимизируем наши решения. Это аналогично процессу зависимых попыток, например игре в «очко». Каждая раздача изменяет вероятности, поэтому оптимальная ставка изменяется, чтобы максимизировать долгосрочный рост.

Помните, чтобы максимизировать долгосрочный рост, мы должны рассматривать текущую игру как неограниченную во времени. Другими словами, следует рассматривать каждую отдельную ставку, как будто она повторяется бесконечное число раз, если необходимо максимизировать рост в течение долгой последовательности ставок в нескольких играх. Давайте обобщим все вышесказанное: когда результат события оказывает влияние на результат(ы) последующего события(ий), нам следует выбирать наибольшее геометрическое ожидание. В редких случаях, когда результат не влияет на последующие события, следует выбирать наибольшее арифметическое ожидание. Математическое ожидание (арифметическое) не учитывает зависимость результатов внутри каждого сценария и поэтому может привести к неверному заключению, когда рассматривается реинвестирование в геометрической среде. Использование предложенного метода в планировании сценария поможет вам правильно выбрать сценарий, оценить его результаты и вероятности их осуществления. Этот метод внутренне более консервативен, чем размещение на основе наибольшего арифметического математического ожидания. Уравнение (3.05) показывает, что среднее геометрическое никогда не может быть больше среднего арифметического. Таким образом, этот метод никогда не будет более рискованным, чем метод наибольшего арифметического математического ожидания. В асимптотическом смысле (долгосрочном) это не только лучший метод размещения, так как вы получаете наибольший геометрический рост, он также более безопасен, чем размещение по наибольшему арифметическому математическому ожиданию, которое неизменно смещает вас вправо от пика кривой f.

Так как реинвестирование почти всегда имеет место в реальной жизни (до того дня, когда вы уйдете на пенсию),1 то есть вы снова будете использовать деньги, которые использовали сегодня, мы должны принимать решения, исходя из того, что такая возможность представится тысячи раз, для того чтобы максимизировать рост. Мы должны принимать решения таким образом, чтобы максимизировать геометрическое ожидание. Более того, так как результаты большинства событий влияют на результаты последующих событий, нам следует принимать решения и размещать средства, основываясь на максимальном геометрическом ожидании, что может привести к решениям, которые не всегда очевидны.

Поиск оптимального f по ячеистым данным В некоторых случаях лучшим выбором будет именно наибольшее арифметическое математическое ожидание, а не геометрическое. Например, когда трейдер торгует постоянным количеством контрактов и желает перейти к работе «фиксированной долей» в какой-то благоприятной точке в будущем. Эта благоприятная точка — порог геометрической торговли, где арифметическая средняя сделка, которая используется в качестве входного данного, рассчитывается как арифметическое математическое ожидание (сумма результатов каждого сценария, умноженных на вероятность их появления), поделенное на сумму вероятностей всех сценариев. Так как сумма вероятностей всех сценариев обычно равна 1, мы можем говорить, что арифметическая средняя сделка равна арифметическому математическому ожиданию Теперь мы рассмотрим поиск оптимального f и его побочных продуктов по ячеистым данным. Этот подход также является гибридом параметрического и эмпирического метода и аналогичен процессу поиска оптимального f по различным сценариям;

только на этот раз мы будем использовать среднюю точку ячейки. Для каждой ячейки у нас будет ассоциированная вероятность, рассчитанная как общее число элементов (сделок) в этой ячейке, деленное на общее число элементов (сделок) во всех ячейках. Для каждой ячейки у нас будет ассоциированный результат, рассчитанный по центральной точке ячейки.

Например, у нас есть 3 ячейки и 10 сделок. Первую ячейку мы определим для P&L от -1000 долларов до -100 долларов. В этой ячейке будет два элемента. Следующая ячейка предназначена для сделок от -100 до 100 долларов, она вмещает 5 сделок.

Наконец, в третью ячейку попадут 3 сделки, которые имеют P&L от 100 до долларов.

Ячейка Ячейка Сделки Ассоциированная Ассоциированный вероятность результат -1000 -100 2 0,2 - -100 100 5 0,5 100 1000 3 0,3 Теперь нам нужно решить уравнение (4.16), где каждая ячейка представляет отдельный сценарий. Таким образом, для случая с 3 ячейками оптимальное f составляет 0,2, или 1 контракт на каждые 2750 долларов на счете (наш проигрыш наихудшего случая будет средней точкой первой ячейки, или (-$1000 + -$100) / / =-$550). Этот метод можно использовать в реальной торговле, хотя он и недостаточно точен, поскольку допускает, что наибольший проигрыш находится в середине наихудшей ячейки, а это не совсем верно. Часто полезно иметь одну лишнюю ячейку, чтобы включить проигрыш наихудшего случая. Допустим, как и в примере с 3 ячейками, у нас была сделка с проигрышем в 1000 долларов. Такая сделка попадает в ячейку -1000 до -100 долларов и поэтому будет записана как долларов (средняя точка ячейки), но мы можем разместить в ячейки те же данные следующим образом:

Ячейка Ячейка Сделки Ассоциированная Ассоциированный вероятность результат -1000 -1000 1 0,1 - -999 -100 1 0,1 - -100 100 5 0,5 100 1000 3 0,3 Теперь оптимальное f составляет 0,04, или 1 контракт на каждые 25 000 долларов на счете. Вы видите, насколько приблизителен этот метод? Поэтому, хотя этот метод даст нам оптимальное f для ячеистых данных, надо понимать, что потеря информации при размещении данных в ячейки может сделать результаты настолько неточными, что они станут бесполезными. Если бы у нас было больше точек данных и больше ячеек, метод был бы намного точнее. Фактически, если бы у нас было бесконечное количество данных и бесконечное число ячеек, метод был бы абсолютно точным (если бы данные в каждой из ячеек были равны средним точкам соответствующих ячеек, то этот метод также был бы точным). Другой недостаток предлагаемого метода заключается в том, что среднее значение ячейки не обязательно расположено в центре ячейки. В реальности среднее значение элементов в ячейке будет ближе к моде всего распределения, чем к средней точке ячейки. Следовательно, полученная дисперсия будет больше, чем есть на самом деле. Существуют способы корректировки, но и они могут быть неточными.

Проблему можно было бы преодолеть, и результаты были бы точными при бесконечном количестве элементов (сделок) и бесконечном количестве ячеек. Если у вас есть достаточно большое количество сделок и достаточно большое количество ячеек, вы можете использовать этот метод с большей уверенностью.

Вы также можете провести тесты «что если», изменяя число элементов в различ ных ячейках, чтобы получить более точное приближение.

Какое оптимальное f лучше?

Pages:     | 1 | 2 || 4 | 5 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.