WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 | 2 || 4 | 5 |

«Матью Мэндл 200 ИЗБРАННЫХ СХЕМ ЭЛЕКТРОНИКИ Редакция литературы по информатике и электронике © 1978 Prentice-Hall, Inc. ...»

-- [ Страница 3 ] --

Конденсатор d, шунтирующий источник питания, одновременно замыкает цепь сигнала через эмит-терную цепь транзистора УПЧ. Как показано в разд. 1.6, такое блокирование питающего источника применяется в усилителях любого типа.

На рис. 7.9 приведена схема демодулирующей системы для цветных телевизионных приемников. Сигналы ПЧ с коллектора последнего каскада УПЧ подаются на диодный детектор сигналов звукового сопровождения частотой 4,5 МГц, а также на видеодетектор. Поскольку в схеме имеются заграждающие фильтры, предназначенные для сведения к минимуму помех на экране кинескопа, сигналы звукового сопровождения также ослабляются, поэтому здесь используют отдельную схему детектора звука (см. гл. 3 и 5). В детекторе сигналов звукового сопровождения ПЧ-сигналы изображения и звука смешиваются для получения нового ПЧ сигнала частотой 4,5 МГц (в черно-белом приемнике этот сигнал частотой 4,5 МГц получается в видеоде текторе).

Сигналы, направляемые на диодный видеодетектор, демоду-лируются, так что выделяются видеосигналы, используя которые получают телевизионное изображение. Перед видеодетектором находится заграждающий фильтр на промежуточную частоту сигналов звукового сопровождения 41,25 МГц, предназначенный для сведения к минимуму помех, которые могли бы вызвать эти сигналы при их попадании на кинескоп. Конденса тор Сб и катушка L2 образуют последовательную резонансную цепь на частоте 41,25 МГц;

вследствие низкого полного сопротивления этой цепи на резонансной частоте сигналы этой частоты шунтируются. Конденсатор связи С2 блокирует источник напряжения, питающий коллектор через резистор R3, а индуктивный элемент является обычной последовательно включенной.корректирующей катушкой каскада усиления видеосигналов (см. рис. 1.12 и соответствующие пояснения).

Рис. 7.9. Демодулятор цветного телевизионного приемника.

7.8. Автоматическая регулировка громкости Схема автоматической регулировки громкости (АРГ) широко используется в радио- и других связных приемниках для обеспечения относительно постоянного уровня громкости на выходе независимо от уровня принимаемого сигнала. Выходной уровень громкости, поддерживаемый системой АРГ, устанавливается регулятором громкости. Когда приемник перестраивают со станции с высоким уровнем сигнала на удаленную станцию с низким уровнем сигнала, разность амплитуд поступающих сигналов будет автоматически выравниваться, так же, впрочем, как и в случае, если имеет место явление замирания сигнала. Системы АРГ работают в широком диапазоне изменений уровней принимаемых сигналов, хотя при приеме очень мощных сигналов местной станции и очень слабых сигналов удаленной станции диапазон корректирования этой системы может оказаться недостаточным.

Рис. 7.10. Схема автоматической регулировки громкости.

Системы автоматической регулировки громкости обеспечивают уровень смещения для транзисторов в каскадах радиочастоты и ПЧ в зависимости от уровня поступающего сигнала. Поэтому при приеме мощного сигнала смещение автоматически изменяется и соответственно уменьшаются коэффициенты усиления каскадов усиления, корректируя тем самым уровень выходного сигнала. Аналогично этому при приеме слабых сигналов смещение изменяется таким образом, что коэффициент усиления каскадов повышается, выравнивая тем самым низкий уровень сигнала..

На рис. 7.10 показана типичная схема АРГ. Амплитудно-мо-дулированный сигнал поступает в детектор через два индуктивно связанных контура — входной (LiCi) и выходной (L2C2). Детектор АМ-сигналов работает так, как было описано выше. Диод выпрямляет радиочастотный сигнал, причем электроны протекают в направлении, показанном стрелкой;

ток течет в обратном направлении. Конденсатор С3 отфильтровывает высокочастотные составляющие однополярных импульсов тока, протекающих через диод, вследствие чего через резистор R2 протекает ток звуковой частоты. Звуковой сигнал через конденсатор С5 поступает на базу первого транзисторного усилителя звуковой сигнал.

Выделяемое на резисторе R2 отрицательное напряжение (его полярность указана на рис. 7.10) через резистор R, ответвляется дчя использования схемой АРГ в качестве напряжения смещения Такое напряжение смещения не должно иметь составляющих сигнала звуковых частот, поэтому резистор fli и конденсатор С4 образуют сглаживающий фильтр, подавляющий колебания звуковой частоты. Емкость конденсатора С4 должна быть достаточно велика для шунтирования составляющих звуковых частот.

Если для функционирования АРГ требуется напряжение смещения положительной полярности, то диод детектора, показанного на рис. 7.10, включается в обратном направлении, что изменяет в свою очередь направление движения электронов и полярность напряжения на резисторе R2. При настройке на мощную станцию образующееся при этом напряжение смещения должно уменьшить коэффициент усиления каскадов.

При этом следует учитывать, что если в каскаде усиления на радиочастоте и ПЧ используются я — р — n транзисторы, то нормальное напряжение смещения, подаваемое в цепь базы, должно быть положительным по отношению к эмиттеру;

в случае же использования р-n-р-транзисторов на базу подается отрицательное напряжение относительно эмиттера. Поскольку уменьшение прямого напряжения смещения биполярного транзистора приводит к уменьшению его проводимости, для снижения коэффициента усиления в случае n — р n-транзисторов регулирующее напряжение смещения, снимаемое с выхода АРГ, должно уменьшать прямое смещение базы транзистора, т. е. делать его менее положительным (см. также гл. 3 и рис. 3.3 и 3.4).

Функционально схема АРГ аналогична схемам АРУ (автоматической регулировки усиления), используемым в телевизионных приемниках (см. разд. 7.9). В схемах АРУ регулируется амплитуда видеосигнала, поэтому термин «автоматическая регулировка громкости» здесь не применим. В некоторых радиоэлектронных устройствах, используемых в промышленности, применяются подобные схемы, однако их называют схемами автоматической регулировки уровня или автоматической регулировки амплитуды сигнала. Функционально они схожи со схемами АРГ и АРУ, которые рассматриваются в данной главе.

7.9. Основная схема АРУ Схемы АРУ используются в телевизионных приемниках для поддержания постоянного уровня сигнала изображения, установленного регулятором контрастности приемника. Как и в случае схем АРГ, схемы АРУ формируют напряжение смещения в зависимости от уровня сигналов радиочастотной несущей;

это напряжение прикладывается к радиочастотным и ПЧ-каска-дам приемника.

На рис. 7.11 изображена наиболее простая схема АРУ. На этой схеме видеосигнал поступает с каскада видеодетектора. При показанной полярности включения диод Д1 проводит ток в направлении, указанном стрелкой, и заряжает конденсатор С1 до максимального значения амплитуды синхроимпульсов, размещаемых на гасящих импульсах. Во время проводящего состояния диода Д1 вследствие весьма малой постоянной времени зарядной цепи происходит быстрый заряд конденсатора Сь По окончании гасящего импульса передаются видеосигналы меньшей амплитуды и диод Д1 оказывается запертым. Так как при запертом диоде постоянная времени разряда RiCi конденсатора С2 весьма велика, то конденсатор остается почти полностью за ряженным в течение интервала времени между синхроимпульсами.

Рис. 7.11. Основная схема АРУ.

Конденсатор C1, весьма медленно разряжающийся через резистор R1, создает на нем падение напряжения указанной на рис. 7.11 полярности. Часть этого напряжения образует напряжение смещения АРУ, которое прикладывается к радиочастотным и ПЧ-каскадам усиления. Величина смещения для принимаемых сигналов среднего уровня может устанавливаться при помощи движка переменного резистора Ri. Так как во время передачи амплитуда синхроимпульсов поддерживается постоянной, то образуемое напряжение смещения имеет неизменную величину. При настройке на отдаленную станцию с более слабым сигналом амплитуда синхроимпульсов уменьшается и на резисторе Ri образуется отрицательное напряжение смещения более низкого уровня. Это приводит к уменьшению обратного смещения, прикладываемого к радиочастотным и ПЧ усилите-лям, что вызывает увеличение коэффициента передачи слабого входного сигнала. Если осуществлена настройка на станцию с мощным сигналом, образуется обратное смещение большей величины, в результате чего коэффициент передачи радиочастотных и ПЧ-каскадов понижается. За счет этого обеспечиваются выравнивание амплитуд видеосигналов, подаваемых на кинескоп, и регулировка степени контрастности.

В описываемой системе АРУ настройка на отдаленную станцию вызывает уменьшение напряжения смещения. Такое уменьшение приводит к увеличению коэффициента усиления полевых МОП-транзисторов, работающих в режиме обеднения носителей, когда ток стока протекает при отсутствии смещения, и к уменьшению при увеличении смещения. Для транзисторов других типов увеличение прямого смещения вызвало бы увеличение коэффициента усиления и возрастание тока. Однако для получения лучших характеристик, лучшей стабильности и увеличения чувствительности предпочитают использовать ключевую схему АРУ.

7.10. Ключевая схема АРУ Рис. 7.12. Ключевая схема АРУ.

Ключевым схемам АРУ отдают предпочтение перед основной схемой, описанной в разд. 7.9, по той причине, что они обеспечивают лучшие, рабочие характеристики. Ключевая схема АРУ характеризуется более высоким отношением сигнал/шум и более быстрой реакцией на изменение амплитуды сигнала. В ключевой схеме АРУ (рис. 7.12) используются два транзистора, один из которых служит в качестве ключа, а другой — как усилитель. При применении n — р — n-транзистора оба импульса, подаваемых на транзистор Т1, должны иметь положительную полярность. Это обусловлено тем, что движок переменного резистора (потенциометра) Ri устанавливается таким образом, что при отсутствии входных сигналов транзистор Т1 заперт. Поскольку к коллектору транзистора не подводится постоянного напряжения для создания отрицательного обратного смещения его коллекторного перехода, необходимого для нормальной работы открытого транзистора, импульс, подаваемый на коллектор, должен иметь положительную полярность. Аналогично этому, если при наличии напряжения прямого смещения, снимаемого с резистора R1, транзистор все же остается закрытым, то для его отпирания на базу транзистора следует подать сигнал положительной полярности. Следовательно, для отпирания транзистора Т1 оба положительных импульса, подаваемых на транзистор, должны поступать одновременно.

Движок потенциометра R1 устанавливается таким образом, чтобы только при воздействии синхроимпульсов, поступающих на базу транзистора Т1, создавалось прямое смещение, достаточное для открывания транзистора при условии, что потенциал коллектора положительный. Поэтому при подаче положительных импульсов на коллектор транзистор TI периодически открывается с частотой гасящих импульсов (15750 Гц для черно-белых приемников и 15734 Гц для цветных). Эмиттерный ток транзистора Т1 поступает на цепь R3,C1, а также ответвляется к базе транзистора Т2, протекая через резисторы R4 и R5 и замыкаясь через резистор R6 и источник +E. Ток, протекающий через Rб, повышает потенциал базы транзистора Т2 и открывает его. Таким образом, периодическое открывание Т1 приводит к появлению импульсов на эмиттерном выходе транзисто--ра, поступающих на цепь R3C1, и на входе транзистора 7Y Эти импульсы усиливаются и подаются на входы УВЧ и УПЧ (вместо двух выходных линий с коллектора и эмиттера при наличии соответствующих развязывающих резисторов можно использовать один вывод).

Так как транзистор АРУ Т1 может проводить только при наличии синхроимпульсов, совпадающих во времени с импульсами строчной развертки, подаваемыми на коллектор транзистора Ti, то в промежутках между синхроимпульсами он не проводит. Поэтому любые шумовые сигналы, прикладываемые к схеме в промежутках времени между соседними синхроимпульсами, не оказывают воздействия на систему АРУ.

Фильтр на выходе транзистора Т1 должен быть рассчитан на частоту горизонтальной развертки;

поэтому он может иметь малую постоянную времени, обеспечивающую малую чувствительность АРУ к быстрым изменениям уровня сигнала несущей. Ключевая схема АРУ особенно хорошо подходит для сведения к минимуму флуктуации контрастности изображения, причиной которых являются пролетающие самолеты.

Самолеты вызывают многократные отражения сигналов, что приводит к дрожанию изображения на экране телевизора.

При увеличении уровня входного видеосигнала на базу Т1 поступает сигнал большей амплитуды, что вызывает увеличение прямого смещения и проводимости. Вследствие этого для целей регулирования усиления формируется большой выходной сигнал. Более слабый сигнал обеспечивает соответственно меньшее прямое смещение с последующим уменьшением выходного напряжения АРУ.

7.11. Автоматическая подстройка частоты В телевизионных приемниках ручной подстройкой можно точно установить частоту гетеродина, благодаря чему для определенной станции (программы) обеспечивается получение нужной промежуточной частоты. При переключении телевизора на другую программу может вновь появиться необходимость в точной установке частоты гетеродина для получения оптимального изображения. Устройство, которое устраняет необходимость в точной подстройке после каждого переключения ПТК, называется устройством автоматической подстройки частоты (АПЧ) или автоматической точной подстройки (АТП). На рис. 7.13 приведена основная схема АПЧ.

Рис. 7.13. Схема автоматической подстройки частоты.

При точной настройке частота гетеродина ПЧ изображения равна 45,75 МГц (стандартное значение для современных телевизионных приемников). В схеме, показанной на рис. 7.13, видеосигналы с последнего каскада УПЧ подаются на базу транзистора TI, который их усиливает и направляет на дискриминатор, аналогичный описанному в разд. 7.5. Резонансные схемы между Tj и дискриминатором настраивают на частоту 45, 75 МГц, и, пока частота входного сигнала соответствует этой частоте настройки, напряжение на выходе дискриминатора не появится.

При переключении на другую станцию и некотором смещении частоты гетеродина частота сигналов, поступающих на базу транзистора Т1, уже не соответствует резонансной частоте 45,75 МГц. Поэтому дискриминатор разбалансирован (см. разд. 7.4), и появляется выходное напряжение. Это напряжение используется для корректировки настройки частоты гетеродина: напряжение подают на варакторный диод, выполняющий функции подстроечной емкости, который включен в колебательный контур гетеродина (эта часть схемы описывается в разд. 12.4 и 12.5). После корректировки частоты гетеродина частота сигнала на входе схемы АПЧ настолько близка к 45,75 МГц, что сигнал на выходе дискриминатора практически отсутствует и дальнейшей корректировки не производится. Полярность сигнала, формируемого дискриминатором, зависит от того, находится ли частота поступающего сигнала выше или ниже резонансной частоты, на которую настроена схема дискриминатора.

При помощи специального ключа выход дискриминатора можно шунтировать, чтобы при необходимости точной ручной подстройки корректирующую схему можно было бы отключать. Для получения оптимальных результатов при работе со схемой АПЧ схема дискриминатора должна быть настроена на требуемую резонансную частоту. Такая настройка обеспечивается сердечником между обмотками трансформатора, на что указывает стрелка на рис. 7.13.

7.12. Автоматическая регулировка усиления сигналов цветности Для сведения к минимуму затухания сигналов и изменений уровня сигналов цветности при переключении телевизионных программ часто применяют схему автоматической регулировки усиления сигналов цветности (АРУСЦ). Основная схема АРУСЦ показана на рис. 7.14;

характеристики такой схемы схожи с характеристиками схемы АРУ, описанной в разд. 7.9 и 7.10. Вместо использования в качестве опорного сигнала синхроимпульсов, как и в схеме АРУ, в схеме АРУСЦ используется сигнал частотой 3,58 МГц (группа колебаний опорной цветовой поднесущей частоты), подаваемый на базу транзистора Т1. Как и в схеме АРУ, для более мощных станций получают сигнал более высокой амплитуды, и эта разница в уровне сигналов различных станций применяется для регулировки усиления сигналов цветности.

Рис. 7.14: Схема автоматической регулировки усиления сигналов цветности.

Диод Д1 выпрямляет и детектирует входной сигнал, причем усиленный сигнал выделяется на резисторе R3 в цепи коллектора транзистора. С этого резистора сигнал подается на первый из двух полосовых усилителей и служит для создания управляющего напряжения смещения, которое регулирует усиление первого полосового усилителя пропорционально амплитуде входного сигнала. Благодаря этому обеспечивается регулировка уси ления сигналов цветности (см. рис. 2.4 и 2.5).

Транзистор Т2 — выключатель канала цветности — выполняет те же функции, что и схема выключения, описанная в гл. 2 (см. рис. 2.4), за исключением того, что в данном случае он управляет проводимостью транзистора второго полосового усилителя. При протекании коллекторного тока транзистора T1 через резистор Rz на последнем создается значительное падение напряжения, и потенциал коллектора снижается настолько сильно, что оказывается недостаточным для отпирания транзистора Т2.

При приеме же сигналов черно-белого изображения передачи группы колебаний опорной цветовой поднесущей частотой 3,58 МГц не производится. В отсутствие таких сигналов на входе транзистора Т последний оказывается запертым. В этом случае положительный потенциал коллектора Т1 максимален и достаточен для открывания транзистора Т2. Вызываемое этим снижение потенциала коллектора транзистора Т приводит к запиранию второго полосового усилителя, как это уже было описано для схемы выключения канала цветности, показанной на рис. 2.4.

Конденсатор Сз имеет малое реактивное сопротивление для высокочастотных составляющих тока и поэтому шунтирует их на землю. Данный конденсатор вместе с резистором R4 образует цепь сглаживания пульсаций тока.

7.13. Демодулятор цветоразностных сигналов В — Y и R — Y [Y-сигнал — яркостный сигнал, содержащий 59% зеленого, 30% красного а 11 % синего цвета. — Прим.

ред.] Как будет показано в гл. 15 (см. рис. 15.5), для экономии частотного спектра три телевизионных цветовых сигнала: красный (R), синий (В) и зеленый (G) — преобразуются в синфазную I- и квадратурную Q составляющие. В приемнике необходимо восстановить три исходных цветовых сигнала. Это осуществляется смешиванием.цветовых сигналов с сигналом поднесущей, поступающим от генератора частотой 3,58 МГц (см.

рис. 4.6), и демодуляцией составляющих R — У и В — У результирующего составного сигнала1). Далее для получения сигналов С — У (путем смешивания) используется матричная схема.

На рис. 7.15 показана типичная схема демодуляции сигналов цветности, выполняющая функции, описанные в предыдущем разделе. На этой схеме транзисторы Т1 иТ2 являются демодуляторами каналов цветности R — Y и В — Y, хотя часто их обозначают латинскими буквами X и Z для отражения определенных фазовых соотношений между сигналами цветности.

В схеме на рис. 7.15 сигналы цветности поступают одновременно на базы транзисторов Т1 и 72 через последовательно включенные развязывающие резисторы R1 и Rз. Сигнал подне-сущей частоты 3,58 МГц, получаемый от генератора 3,58 МГц, подается на резисторы R1 и R5, включенные в цепи эмиттеров. Путем изменения падений напряжения на этих резисторах, создаваемых поднесущей, изменяются надлежащим образом эмиттерные и коллекторные токи транзисторов. На выходные токи схемы, безусловно, также оказывают влияние входные сигналы цветности, поступающие на базы транзисторов. Поэтому составляющие боковых полос цветности смешиваются с поднесущей, и соответствующие сигналы R — У и В — У демодулируются и выделяются в цепях. коллекторов. Катушка индуктивности, включенная последовательно с резистором R5, служит для создания нужного фазового сдвига. Иногда R5 также шунтируют конденсатором для регулировки нужной степени фазового сдвига (около 90°), что позволяет достичь наилучшего цветового воспроизведения.

Рис. 7.15. Схема демодулятора цветоразностных сигналов и матричная схема.

Транзисторы 73 и Т4 усиливают сигналы R — Y и В — У, и снимаемые с каждого коллектора усиленные сигналы прикладываются к соответствующим управляющим сеткам кинескопа для получения красного и синего цвета. Некоторая часть сигналов с выходов транзисторов Т3 и Г4 подается при помощи резисторов Ri8, Rн и Ris на базу транзистора Т6. Эти резисторы образуют матрицу для смешивания нужных значений амплитуд выходных сигналов с целью получения требуемого колебания G — У для сигналов зеленого цвета. Поэтому величины сопротивлений резисторов R16 и Rn различны, причем нужные номиналы зависят от характеристик транзисторов и параметров схемы, а также от амплитуд сигналов в каналах R — У и В — У (см. также рис. 2.6 и соответствующий текст.).

Глава ЦИФРОВЫЕ СХЕМЫ 8.1. Общие положения При построении систем управления производственными процессами, аппаратуры телефонных станций, блоков вычислительных и счетных машин, связной радиоэлектронной аппаратуры (радиоприемников, телевизоров и т.д.) используются различные вентильные и переключающие схемы. Эти специальные схемы выполняют логические функции в арифметических, запоминающих и других устройствах вычислительных машин, микропроцессоров, телефонных станций и других систем. Имеется ограниченное число базовых логических электронных переключателей и вентилей, однако их различные комбинации позволяют получить многие другие схемы, на основе которых можно построить вычислительную машину, автоматизированную систему управления производственными процессами или спроектировать оборудование телефонных сетей.

Обработка цифровых и других данных в цифровых вычислительных машинах производится при помощи схем, имеющих в процессе работы два состояния: включено или выключено. Эти два состояния можно реализовать достаточно просто и надежно, причем переключение из одного состояния в другое может осуществляться очень быстро. Промежуточные значения проводимости, характерные для работы усилителей низкой и высокой частоты, в логических схемах не используются, поскольку присвоение определенных цифровых значений величинам проводимости транзистора практически невозможно из-за проблем, связанных с обеспечением надежности работы, стандартизации и совместимости схем.

Поэтому для представления единицы и нуля в соответствии с выражениями булевой алгебры используются состояния схемы включено и выключено, причем состояние единица- (1) соответствует истинному высказыванию (ИСТИНА), а состояние (0) — ложному высказыванию (ЛОЖЬ). Как будет показано в нуль данной главе, эти состояния позволяют сформулировать определенные логические утверждения для различных комбинаций схем, связанных с переключением и выполнением логических функций.

Триггер, схема которого описывается в разд. 8.2, является элементом памяти состояний нуль и единица;

в процессе работы триггер переключается из одного состояния в другое, сохраняя полученное состояние неизменным до переключения. Схемы, реализующие логические функции при подаче импульсов на их входы, имеют такие необычные названия, как вентили И, ИЛИ и НЕ в соответствии с выполняемыми логическими операциями И, ИЛИ и НЕ. Схемы такого типа рассматриваются в данной главе.

8.2. Статический триггер Триггер Иклз-Джордана не является релаксационным генератором, поскольку для получения выходных сигналов он запускается входным импульсом. Триггер имеет два устойчивых состояния. Он находит широкое применение в аппаратуре управления производственными процессами, в вычислительных машинах, электронных счетчиках и других системах дискретного действия.

Рис. 8.1. Схема триггера.

На рис. 8.1 показана одна из схем построения триггера на двух р — n — р-транзисторах. В этой схеме к двум коллекторам через резисторы R1 и R4 подается отрицательное напряжение. Необходимое отрицательное напряжение.смещения в цепи эмиттеров создается на резисторе Re благодаря протеканию через него тока эмиттера какого-нибудь одного открытого транзистора Т1 или Т2. Изменение напряжения на резисторе R сводится к минимуму благодаря шунтирующему действию конденсатора С3. Наличие цепи R&C3 стабилизирует характеристики транзисторов (см. разд. 1.1).

В момент включения напряжения источника питания один из транзисторов начинает проводить раньше и сильнее другого даже при достаточно хорошей симметрии схемы. Если, например, первым начинает проводить транзистор T1, то на резисторе Ri образуется падение напряжения, вследствие чего отрицательный потенциал коллектора транзистора Т1 уменьшается. Этот потенциал приложен также к базе транзистора Т2, и поэтому прямое смещение этого транзистора уменьшается, что вызывает уменьшение его проводимости. С уменьшением проводимости транзистора Т2 отрицательный потенциал его коллектора возрастает, что приводит к росту отрицательного потенциала на базе транзистора Т1. Этот потенциал увеличивает прямое смещение транзистора T1, благодаря чему еще больше возрастает его проводимость и соответственно возрастает падение напряжения на R1 и еще больше уменьшается отрицательный потенциал коллектора. Последнее еще больше уменьшает прямое смещение Т2 и его проводимость, что приводит к дальнейшему увеличению отрицательного потенциала коллектора Т2 и к дополнительному увеличению прямого смещения (отрицательного потенциала) на базе транзистора Т1. В результате протекания процессов в течение короткого интервала времени транзистор Тг оказывается в полностью проводящем состоянии (состоянии насыщения), а транзистор Т2 — закрытым.

Такое устойчивое состояние будет сохраняться до тех пор, пока к резистору Rs не будет приложен запускающий импульс. Запускающий импульс должен иметь положительную полярность, причем при его подаче увеличивается положительный потенциал на базе каждого транзистора. Однако транзистор Т2 уже закрыт, и положительный потенциал (обратное смещение) не оказывает на него действия. Для транзистора же Т1 положительный потенциал, приложенный к его базе, создает обратное смещение, запирающее транзистор.

При запертом транзисторе падение напряжения на резисторе R1 не образуется, и отрицательный потенциал коллектора транзистора Тг становится равным напряжению источника питания. Так как коллектор транзистора Ti через резистор R2 связан с базой транзистора Г2, то высокий отрицательный потенциал, приложенный к базе транзистора Т2, создает значительное прямое смещение, отпирающее транзистор. В этом случае на резисторе R4, включенном последовательно с коллектором транзистора Т2, появляется большое падение напряжения, в результате чего отрицательный потенциал коллектора падает до низкого значения. Поэтому отрицательное напряжение, приложенное к базе транзистора T1 через резистор R3, также уменьшается, что поддерживает транзистор T1 в закрытом состоянии. Таким образом, транзистор Т1 полностью запирается, а транзистор Т находится в состоянии насыщения. Это состояние является устойчивым. По приходе следующего положительного импульса на R5 осуществляется переброс схемы и ее возврат в исходное состояние, при котором транзистор T1 оказывается в состоянии насыщения, а транзистор Т2 заперт.

Изменения выходного напряжения при подаче запускающих импульсов получаются на коллекторах обоих транзисторов, что может быть использовано, например, для запуска других триггеров. Вследствие того что выходное напряжение с приходом каждого запускающего импульса изменяет свою полярность, по следовательно с С4 можно включить диод с тем, чтобы в последующий каскад передавались только положительные импульсы тока. Поэтому один выходной импульс получается на каждые два входных запускающих импульса. Характеристики схемы позволяют использовать ряд каскадов триггеров в качестве счетного устройства, а также для деления частоты следования импульсов в 2п раз, где n — число последовательно соединенных триггеров. Если один из триггеров служит для запуска другого, то последовательный диод в выходной цепи не нужен, поскольку диоды Д1 и Д2, называемые входными, пропускают к базам только положительные импульсы.

8.3. Схема ИЛИ Логической схемой ИЛИ называется схема с одним выходом и любым числом входов, когда выходной сигнал образуется в результате.воздействия входного сигнала иа один или несколько входов схемы. На рис.

8.2, а показана типичная схема (вентиль) ИЛИ, выполненная на диодах. На схеме изображены три входа, хотя можно использовать только два входа или же добавить другие входы. Такой вентиль ИЛИ не нуждается в источнике питания, поскольку для обеспечения проводимости диодов подаются входные сигналы соответствующей полярности.

Когда к входу A прикладывается положительное (по отношению к земле) напряжение или импульс, диод Д] становится проводящим. Возникающий при этом ток создает на резисторе падение напряжения, представляющее выходной сигнал. Таким образом, при подаче импульса на вход А возникает выходной импульс. Такой же результат получается при подаче импульса на вход В или С. Если импульсы напряжения;

одинаковой высоты приложены к двум или трем входам одновременно, выходной сигнал практически не отличается от рассмотренного. Таким образом, один и тот же выходной сигнал образуется при воздействии сигнала на вход Л, ИЛИ на вход В, ИЛИ на вход С, ИЛИ на два, ИЛИ на все три входа. Вместо использования положительного сигнала (импульса), соответствующего логической единице, или логическому высказыванию ИСТИНА, может использоваться импульс отрицательной полярности. В этом случае диоды, показанные на рис.

8.2, а, должны быть включены в обратном направлении. (Если для представления логической 1 выбраны положительные сигналы, то сигналы отрицательной полярности, а также состояние отсутствия сигнала представляются 0. Аналогично этому использование логической 1 для отрицательных сигналов означает соответствие 0 положительных сигналов, а также состояния отсутствия сигнала.) Рис. 8.2. Схемы ИЛИ и их условные обозначения.

На рис. 8.2,6 показана схема ИЛИ, реализованная на транзисторах, включенных с объединенным эмиттером.

Для увеличения числа входов можно использовать три или более транзистора. На оба коллектора подается положительное напряжение, создающее обратное смещение коллекторных переходов. При отсутствии входных сигналов транзисторы практически заперты и выходной сигнал отсутствует. Однако, когда к входу А при кладывается импульс положительной полярности, транзистор Т1 отпирается. Возникает ток эмиттера, который протекает через резистор в цепи эмиттера и создает на этом резисторе падение напряжения, являющееся выходным сигналом. Аналогично импульс положительной полярности на входе В также приводит к появлению выходного сигнала, поскольку в этом случае отпирается транзистор Т2. Как и в случае схемы, показанной на рис. 8.2, а, при одновременном воздействии сигналов на оба входа также возникает выходной сигнал, что соответствует логической функции ИЛИ.

На рис. 8.2,в — д показаны условные обозначения схемы ИЛИ с различным числом входов (2, 3 и 5) [В отечественной научно-технической литературе используются другие обозначения схемы ИЛИ. — Прим. ред.].

Булева алгебра, упомянутая в разд. 8.1, является разделом математики;

она описывает поведение переключающих логических схем и в символическом виде выражает соотношения между состояниями таких схем. В булевой алгебре знак + используется для обозначения функции ИЛИ — логического сложения.

Поэтому выражение А + В в действительности обозначает А ИЛИ В, а вовсе не указывает на арифметическое сложение. Можно производить логическое сложение нескольких величин, например А + В + + С + D [Чтобы отличать логическую схему от арифметической, используется специальный символ логического сложения V- Тогда приведенное здесь выражение будет выглядеть следующим образом: A\/B\/C\/D. — Прим. ред.].

Как отмечалось выше, логическим состояниям ИСТИНА (И) и ЛОЖЬ (Л) соответствуют два значения логической величины. Логическая сумма двух логических величин может принимать значения, указанные в табл. 8.1 — 8.3.

Таблица 8.1 Таблица 8.2 Таблица 8. 0 + 0 = 0 Л + Л = Л 0 + 0 = A + 0 = 1 И + Л = И 1 + 0 = 0 + B = 1 Л + И = Л 0 + 1 = A + B = 1 И + И = И 1 + 1 = При большем числе логических слагаемых возможны соотношения:

0+0 + 0 = 0;

0 + 1+0=1 и т. д.

8.4. Схемы ИЛИ-НЕ, И, И-НЕ Выходной импульс можно снимать не с эмиттерного повторителя (рис. 8.2,6), а с коллекторной цепи транзистора с заземленным эмиттером (рис. 8.3, а). Однако в этом случае фазы выходного и входного сигналов отличаются на 180°. Поэтому положительный импульс на входе вызывает на выходе импульс отрицательной полярности. Такая логическая схема, подобная: схеме ИЛИ, но отличающаяся от последней тем, что входной и выходной сигналы находятся в противофазе, называется схемой ИЛИ-НЕ.

Рис. 8.3. Схемы ИЛИ-НЕ (а), И и И-НЕ (б) и условные обозначения схем ИЛИ-НЕ (б), И (г) и И НЕ (дне).

На рис. 8.3,в показано символическое изображение схемы ИЛИ-НЕ. Маленький кружок у выхода обозначает инверсию сигнала. В данном случае, если A = 1, то сигнал на выходе соответствует 0.

На рис. 8.3,6 показана другая логическая схема, в которой два n — р — n-транзистора образуют каскад совпадения. Здесь для получения выходного импульса необходимо совпадение во времени входных импульсов.

Обратите внимание на то, что эмиттер транзистора Т1 включен последовательно с коллектором транзистора Т2.

Следовательно, в цепях эмиттер — коллектор нет тока, если оба транзистора,не открыты одновременно.

Поэтому если, например, на транзистор TI поступает положительный импульс, а на вход транзистора Т положительный импульс не подается, то цепь протекания коллекторных токов оказывается разорванной и выходной сигнал отсутствует. То же самое имеет место, если импульс поступает лишь на вход В.

Таблица 8. Входы Выход А В с D 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Если импульсы подаются на оба входа одновременно, каждый транзистор получает необходимое прямое смещение и оказывается проводящим, благодаря чему цепь протекания коллекторных токов замыкается. Если выходной сигнал снимается с резистора в цепи эмиттера транзистора Тч, то выполняемая логическая операция называется операцией И, а логическая схема — соответственно схемой (вентилем) И по той причине, что для получения выходного импульса необходима подача импульсов на оба входа А и В. При трехвходовой схеме И для возникновения выходного импульса, соответствующего логической единице, понадобилось бы приложение импульсов на все три входа, поскольку все три транзистора были бы включены последовательно.

Если выходной сигнал снимается с коллектора транзистора Ti, то подаваемый на его вход сигнал инвертируется. Поскольку в этом случае полярность выходного сигнала не совпадает с полярностью входных сигналов, выполняемая при этом логическая операция называется И-НЕ;

такое же название присваивается логической схеме.

Функция И обозначается в логических выражениях знаком умножения [В качестве знака логического умножения используется также специальный символ /\. — Прим. ред.]. Поэтому логическое соотношение D=A B выражает логическую операцию И, а не арифметическое умножение одной величины на другую. Символ умножения иногда опускают, и операция логического умножения обозначается как АВ или ABC. На рис. 8.3,г показано условное обозначение схемы И, а на рис. 8.3,д и е — обозначения схем И-НЕ с разным числом входов [В отечественной литературе используются другие условные обозначения схем И и И-НЕ. — Прим. ред.].

Таблица 8.4 представляет собой таблицу истинности схемы И с тремя входами, выражающую логическую операцию D = A*B*C. Как показано в этой таблице, для получения выходного сигнала необходимо совпадение во времени сигналов на всех трех входах.

8.5. Сложные логические схемы Отдельные вентили с определенными характеристиками комбинируют разными способами для выполнения различных логических операций, удовлетворяющих заданным алгоритмам, а также для трассировки, повторной трассировки, шунтирования, инвертирования и стробирования сигналов. Одна из логических схем представлена на рис. 8.4,а, где транзистор Т1 образует схему ИЛИ вместе со схемой И, включающей транзисторы Т2 и Т3.

Обратите внимание на то, что транзисторы T2 и T3 включены последовательно и оба лараллельны транзистору Т1.

Так как выходной сигнал снимают с объединенных цепей коллекторов, здесь имеет место обычное инвертирование сигнала. Поэтому вместо функций И и ИЛИ реализуются функции И-НЕ и ИЛИ-НЕ, и сигналы на выходе являются инвертированными. Операцию инвертирования, выражающую логическую операцию отрицания (НЕ), обозначают чертой над логической величиной (A=НЕ А) или над логическим выражением [А + +8С = НЕ (А + ВС)].

На рис. 8.4,6 дано символическое изображение логической схемы, показанной на рис. 8.4, а. Простота условного изображения позволяет легко понять выполняемую логическую операцию независимо от путей ее технической реализации: на основе диодов, транзисторов или комбинации резисторов, транзисторов и диодов.

В частности, схема показанная на рис. 8.4, а, выполнена на базе резисторно-транзисторной логики.

8.6. Резисторно-транзисторные и диодно-транзисторные логические схемы Как показано на рис. 8.5, а, сигналы на базовый вход транзистора логической схемы могут подаваться через резисторы нескольких входов схемы. Такая схема выполняет функцию ИЛИ, поскольку при наличии сигнала на одном или нескольких входах получается выходной сигнал. Схема выполнена на полевом транзисторе с общим истоком, поэтому фаза сигнала, снимаемого в цепи стока, противоположна фазе входного сигнала.

Следовательно,.логическая операция ИЛИ инвертируется.и определяется выражением А + В + С.

.Рис. 8.4. Сложная логическая схема.

Если к выходу этой схемы подключить для инвертирования сигнала дополнительный усилитель (с общим эмиттером или общим истоком), то такая схемная комбинация обеспечивает выполнение операции ИЛИ, выражаемой как Л + Б + С. Такой фазоинвертирующий усилитель называется логической схемой НЕ, поскольку выходной сигнал представляет логическую величину, отрицающую логическую величину, соответствующую входному сигналу. Символическое обозначение схемы НЕ — треугольник с небольшим кружком на выходе для указания на процесс инвертирования (см. рис. 8.5, а);

предполагается, что схема НЕ выполняет операцию инвертирования входного сигнала, но усиление этого сигнала не обязательно. Например, трансформатор с коэффициентом передачи, равным единице, реализует функцию НЕ без усиления;

эту же функцию может выполнять и транзисторная схема с коэффициентом усиления, равным единице.

Схему с подачей на вход транзистора сигналов через рези-сторы называют резисторно-транзисторной логической схемой (РТЛ). Подача сигналов может также осуществляться через диоды (рис. 8.5,6). Такая схемная комбинация носит название диодно-транзисторной логики (ДТЛ).

Рис. 8.5. Схемы РТЛ и ДТЛ.

Рис. 8.6. Схемы ИЛИ-НЕ и И-НЕ на МОП-транзисторах.

На рис. 8.6, а показана диодно-транзисторная логическая схема на полевом МОП-транзисторе. Данная логическая схема имеет четыре входа с диодами, которые иногда называются входными, поскольку они пропускают импульсы только определенной полярности, создавая тем самым однонаправленный путь для токов входных сигналов. Вследствие однонаправленных характеристик диодов образуется развязка между схемами формирования входных сигналов и входом МОП-транзистора. На рис. 8.6, б показана схема И-НЕ с двумя входами на МОП-транзисторах, которая по выполняемой функции аналогична транзисторной схеме И-НЕ (рис.

8.3,6).

8.7. Логика с непосредственными связями Для упрощения логической схемы с многими входами транзисторы иногда включают непосредственным образом (рис. 8.7, а). Такую логику называют непосредственно-связанной диодно-транзисторной логики (ДТЛ).

Обратите внимание на параллельное включение транзисторов. Схема с такой параллельной конфигурацией выполняет функцию ИЛИ-НЕ (рис. 8.7,6). Сигнал на входе одной или нескольких баз транзисторов левой группы отпирает соответствующие транзисторы, поскольку импульс положительной полярности создает прямое смещение n — р — n-транзистора. Когда один (или несколько) из этих транзисторов отпирается и входит в насыщенное состояние, на выходе образуется практически короткое замыкание вследствие очень малого полного сопротивления насыщенного транзистора. В этом случае падение напряжения на резисторе R равно напряжению источника, а коллекторы оказываются под потенциалом земли. Поэтому к базам последующих транзисторов двух раздельных схем ИЛИ прикладывается нулевое напряжение, вследствие чего эти транзисторы не отпираются. При отсутствии положительных сигналов на базах всех остальных транзисторов эти транзисторы оказываются запертыми. В этом случае падения напряжений на резисторах R2 и Rз практически равны нулю и напряжения сигналов на выходах 1 и 2 равны напряжениям источников питания, причем их полярность совпадает с полярностью входного сигнала. Это объясняется инвертированием сигналов схемами ИЛИ, поскольку здесь используются транзисторы, включенные по схеме с общим эмиттером.

Поэтому, как показано на рис. 8.7,6, выходной импульс первой схемы ИЛИ имеет отрицательную полярность (точнее, его величина почти равна нулю). Когда этот сигнал поступает на входы последующих схем ИЛИ, он вновь инвертируется, так что полярность и форма сигналов на выходе соответствуют полярности и форме исходного сигнала.

Рис. 8.7. Логическая схема с непосредственными связями.

Если хотя бы на один из других входов схем ИЛИ, расположенных справа на рисунке, подать сигналы положительной полярности, то на выходах этих схем сигналы будут иметь обратную полярность (точнее, выходные сигналы будут практически равны нулю), поскольку они повторно не инвертируются.

6.8. Схема ИСКЛЮЧАЮЩЕЕ ИЛИ Для вентилей И, И-НЕ и др. удобно использовать символы, поскольку они позволяют более наглядно представлять входные и выходные логические сигналы и рабочие характеристики таких вентилей. Поэтому, хотя и известны различные способы реализации схемы ИЛИ (на диодах, резисторах и диодах, на транзисторах), для их обозначения используется один символ.

Иногда используемую комбинацию логических схем можно представить одним символом, определяющим все свойства комбинированной сложной схемы, что делает ненужным изображение четырех, пяти или даже большего числа символических обозначений отдельных схем, применяемых для реализации некоторой операции. Примером может служить полусумматор, схема которого показана на рис. 8.8. По существу полусумматор состоит из схемы ИЛИ и двух схем И, одна из которых имеет инвертированный вход. Последняя схема является схемой ИСКЛЮЧАЮЩЕЕ ИЛИ-НЕ (ЗАПРЕТ). Эти три логические схемы связаны между собой, как показано на рис. 8.8, а, хотя для индикации комбинации схем И и ИСКЛЮЧАЮЩЕЕ ИЛИ-НЕ, но без выхода для цифры переноса часто используют один символ, изображенный на рис. 8.8, б. Этот символ соответствует схеме ИСКЛЮЧАЮЩЕЕ ИЛИ [Эта логическая схема известна под названием схемы неравнозначности или двухвходовой суммы суммирования по модулю 2. — Прим. ред.]. Если после схемы, показанной на рис. 8.8,6, следует инвертор (рис. 8.8, в), то получаем схему ИСКЛЮЧАЮЩЕЕ ИЛИ-НЕ (схема эквивалентности или равнозначности), символ которой изображен на рис.8.8,г.

Полные сумматоры (последовательного типа) могут быть получены путем использования двух полусумматоров, показанных на рис. 8.8, а. Полусумматоры применяются также для целей переключений и для преобразования кодов.

Рис. 8.8. Полусумматор (а) и условные обозначения схем ИСКЛЮЧАЮЩЕЕ ИЛИ (б), НЕ (в) и ИСКЛЮЧАЮЩЕЕ ИЛИ-НЕ (г).

Если на.входы схемы ИЛИ поступают два импульса, то они одновременно появятся и на схеме И. Тогда на выходе этой схемы И возникает импульс, который поступает на вход схемы ЗАПРЕТ и закрывает эту схему, препятствуя вводу сигналов от схемы ИЛИ. Следовательно, логика работы данной схемы такова: когда на обоих входах схемы ИЛИ действуют 1, то на выходе «Сумма» появляется 0, а на выходе «Перенос» — 1.

Таблица 8. А в Сумма Перенос 0 0 0 1 0 1 0 1 1 1 1 0 При подаче импульса только на один какой-нибудь вход схемы ИЛИ импульс запрета не формируется. В этом случае импульс, соответствующий 1, образуется только на выходе «Сумма». Выполняемая логическая операция соответствует правилу двоичного сложения 1 + 1 = 10 (двоичное число два). Поэтому, если на входах А и В действуют единичные сигналы, то выходной сигнал на выходе «Сумма» соответствует 0 (импульс отсутствует), но возникает импульс переноса на выходе «Перенос» представляемый 1 старшего разряда в двоичном числе 10.

Рис. 8.9. Преобразователь кода Грея в двоичный код.

На основе описания данной логической схемы может быть составлена таблица истинности (табл. 8.5), иллюстрирующая операции, выполняемые схемой (полусумматором).

Комбинацию схем ИСКЛЮЧАЮЩЕЕ ИЛИ можно использовать для преобразования кода Грея в двоичный код (рис. 8.9). Код Грея называют также циклическим кодом или кодом с минимальными ошибками. Код Грея широко применяется в вычислительных и управляющих системах, поскольку при этом уменьшаются случайные ошибки в дроцессе работы. Это объясняется тем, что по мере возрастания чисел в коде Грея в некоторый момент времени изменяется только одна цифра. В двоичном коде это не так (табл. 8.6).

В преобразователе, показанном на рис. 8.9, количество логических схем ИСКЛЮЧАЮЩЕЕ ИЛИ равно количеству разрядов преобразуемых чисел. Предположим, что слева в схему вводится число в коде Грея (01010). [Заметим, что на выходах схем сигнала переноса не образуется (1 + 1=0).] Нуль, цо-ступающий на верхний вход схемы А, передается и на выход, поскольку вход непосредственно соединен с выходом. При по даче 1 на нижний вход схемы А на выходе этой схемы также формируется 1. Но выход этой схемы связан с входом схемы В. Поскольку на нижний вход схемы В сигнал не поступает (подается сигнал, соответствующий нулю), на выходе формируется 1. Эта 1 подается на верхний вход схемы С и так как на нижний вход этой схемы также поступает 1, то на ее выходе получаем 0. Аналогично этому, поскольку на входы схемы D сигналы не поступают (подаются нули), то на выходе также получается 0. Таким образом, число 1010 в коде Грея преобра зуется в двоичное число 1100 (табл. 8.6).

Таблица 8. Десятичное число Двоичный код Код Грея 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 10 1010 11 1011 12 1100 Рис. 8.10. Схема считывания двоичного числа в прямом и обратном кодах.

8.9. Представление двоичного числа в прямом HI обратном кодах В вычислительных машинах часто используются числа в обратном и дополнительном кодах. Так, например, код 0101 является обратным кодом двоичного числа 1010, а 1010 — обратный код числа 0101 и т. д., т. е.

процесс преобразования прямого кода в обратный состоит в замене 1 на 0 и 0 на 1 [Указанные здесь операции преобразования кодов относятся только к отрицательным числам, так как у положительных чисел прямой, обратный и дополнительный коды совпадают. Для получения дополнительного кода числа;

следует к его обратному коду добавить единицу младшего разряда числа, — Прим. ред.].

На рис. 8.10 изображена схема.считывания двоичного числа, записанного в триггерах регистра (число триггеров равно числу разрядов двоичного числа), в прямом или обратном коде. Схема состоит из комбинации двухвходовых схем И и ИЛИ. Работой схем И управляют два управляющих импульса, подаваемых на две раздельные шины. На верхнюю шину подается импульс, действующий при считывании числа в обратном коде, а на нижнюю шину поступает импульс, действующий при считывании числа в прямом коде. Каждый триггер связан с парой схем И, причем основной выход триггера Q подается на вход той схемы И, которая связана с нижней шиной, а инверсный выход Q соединен со схемой И, связанной с.верхней шиной.

Пусть производится считывание двоичного числа в обратном коде и какой-нибудь из триггеров находится в нулевом состоянии (Q = 0), тогда Q=l и при подаче управляющего импульса на верхнюю шину срабатывает схема И, связанная с выходом Q=l, а на выходе схемы ИЛИ возникает сигнал 1. Если же в триггере записано число Q = l, то, поскольку при этом Q = 0, связанная с этим выходом схема И не срабатывает и на выходе схемы ИЛИ фиксируется сигнал,0.

При считывании числа в прямом коде управляющий импульс подается на нижнюю шину и поэтому сигнал получается на выходах только тех схем И, которые связаны с выходами Q=l;

эти значения фиксируются и на выходах соответствующих схем ИЛИ. На выходах же схем И, которые связаны с выходами Q = 0, образуется сигнал 0, который.повторяется и на соответствующих выходах схем ИЛИ.

Глава МОСТОВЫЕ СХЕМЫ 9.1. Мостик Уитстона Мостовые схемы используются в различных областях электроники для проведения измерений, для целей управления m обеспечения возможности считывания переменных. Вместе с: мостовыми схемами применяются такие чувствительные элементы, как гальванометры, откалиброванные измерительные-приборы и датчики, обеспечивающие в случае разбаланса звуковую или световую сигнализацию.

В измерительной технике мостовые схемы используются для-определения величин сопротивлений, емкостей или индуктивно--стей, а также частоты сигнала. В системах управления мостовые схемы устанавливают наличие разбаланса между двумя: напряжениями, на основе чего вырабатываются сигналы кор рекции ошибок. Мостовые схемы могут применяться в источниках питания, а также в некоторых схемах детектирования, как будет.показано в данной главе.

На рис. 9.1 изображена схема мостика Уитстона. В этой схеме резисторы образуют плечи мостовой цепи, в диагональ, включен индикаторный прибор, а к двум другим узлам подводится постоянное напряжение. Такая схема может применяться с источником переменного напряжения и измерителем, работающим на.переменном токе. Однако на постоянном токе можно-использовать только резистивный мостик, поскольку при наличии индуктивности или емкости необходим источник переменного напряжения.

В схеме, показанной на рис. 9.1, a, Rs является стандартным резистором, величина которого известна, a Rx — резистор неизвестной величины. Если мост сбалансирован, величину Rx можно определить непосредственным образом или путем сопоставления со стандартным резистором Rs.

Существует множество состояний равновесия мостика Уитстона, и одно из них показано л а рис. 9.1,6. На этой схеме все резисторы имеют равную величину, поэтому между верхним и нижним зажимами измерителя нет разности потенциалов.. В этом случае стрелка гальванометра или другого индикаторного прибора будет находиться в положении, соответствующем! равновесию (указывает на нуль).

На рис. 9.1, в показано другое состояние равновесия. В этой схеме сопротивления резисторов R1 и R составляют величины по 100 Ом, а сопротивления резисторов Rs и Rx — по 50 Ом. Вследствие равенства сопротивлений резисторов Ri и R2 приложенное напряжение делится между ними поровну. Аналогично этому напряжение делится поровну между резисторами Rs и Rx, хотя величины их сопротивлений и меньше величин сопротивлений двух других резисторов. Поэтому падение напряжения на R2 равно падению напряжения на Rs, и опять между верхним и нижним зажимами нет разности потенциалов, т. е. Мост уравновешен. В этом случае величина сопротивления Rx равна 50 Ом, что соответствует величине.стандартного резистора.

Еще одно состояние равновесия моста иллюстрируется на рис. 9.1,г. На этой схеме сопротивление резистора Ri в два раза больше сопротивления резистора R2, а сопротивление резистора Rs в два раза больше сопротивления резистора Rx. Вследствие равенства отношений R2/Rx=R1/Rs падения напряжений на R2 и Rx одинаковы, и мост уравновешен.

Рис. 9.1. Мостик Уитстона на постоянном токе.

Для различных условий равновесия, показанных на рис. 9.1, величину неизвестного сопротивления резистора Rx можно определить из соотношения, выражающего условие равновесия-моста:

(9.1) 9.2. L и С-мостики Уитстона Мостик Уитстона может быть также использован для измерения величины индуктивности или емкости (рис.

9.2). Индуктивный мост изображен на рис. 9.2, а, причем в этом случае необходимо использовать источник переменного напряжения и измерительный прибор, работающий на переменном токе. При наличии переменного тока индуктивное реактивное сопротивление вызовет падение напряжения на катушке индуктивности аналогично тому, как напряжение падает на резисторах в плечах моста. Поэтому, если падение напряжения на R2 равно падению напряжения на Lx, мост уравновешен и можно определить неизвестную величину Lx из формулы (9.2) Для емкостного моста, показанного на рис. 9.2,6, функция реактивного сопротивления является обратной, поскольку реактивное сопротивление конденсатора уменьшается при увеличении его емкости, в то время как реактивное сопротивление катушки при увеличении индуктивности возрастает. Поэтому в состоянии равновесия моста отношение сопротивлений R1 и R2 определяет искомую емкость:

(9.3) Рис. 9.2. L- и С-мостики Уитстона.

9.3. Мост Овена Работа моста Овена, типичная схема которого показана на рис. 9.3, а, основывается на сопоставлении индуктивности и емкости..В этой схеме неизвестная индуктивность обозначена Lx, а резистивная составляющая индуктивного сопротивления Rx. Для уравновешивания моста можно изменять емкость конден сатора С1 или же последовательно с Lх включить переменный резистор. В состоянии равновесия моста величину индуктивности Lx можно вычислить по формуле RХ = RSC2/С1 (9.4) Рис. 9.3. Мостовые схемы Овена и Максвелла.

Величина резистивной составляющей индуктивного сопротивления определяется следующим выражением:

9.4. Мост Максвелла Еще одним прибором для определения величины индуктивности по методу сравнения индуктивности и емкости является мост Максвелла. Типичная схема этого моста показана на рис. 9.3, б. Величина Lx находится по формуле Lx = R1R8C1 (9.6) Для расчета величины резистивной составляющей сопротивления катушки индуктивности можно использовать следующую формулу:

(9.7) 9.5. Мост Вина Мост Вина (рис. 9.4, а) применяется для измерений частоты. Его можно также использовать для проверки величины емкости по данным сопротивлениям и частоте приложенного переменного напряжения. Если CX = CS, RX = JRS и R2 = 2Ri, то измеряемая частота определяется следующим выражением:

Рис. 9.4. Мост Вина и резонансный мост.

9.6. Резонансный мост Резонансный мост, показанный на рис. 9.4, б, является мостом типа LCR. В уравновешенном состоянии плечо моста, состоящее из Rx, Ci и L.Y, на частоте приложенного сигнала находится в резонансе, поэтому схема становится чисто резистив-ной. Это объясняется тем, что на резонансной частоте реактивное сопротивление конденсатора С1 равно по величине и противоположно по знаку реактивному сопротивлению катушки ин дуктивности Lx. Вследствие этого соответствующие реактивные составляющие взаимно компенсируются и мост работает как чисто резистивный. Поэтому этот мост используется для измерений индуктивности или импеданса (комбинации индуктивной и резистивной составляющих сопротивления индуктивности).

Величина индуктивности резонансного моста при выполнении условий равновесия связана с угловой частотой w (w = 2пf, где f — круговая частота) следующим уравнением:

(9.9) Неизвестную величину Rx можно определить при помощи следующей формулы:

(9.10) 9.7. Мост Хея На рис. 9.5, а показан мост Хея. Этот мост аналогичен мосту Максвелла, описанному ранее, за исключением того, что конденсатор Ci и резистор R2 включены не параллельно, а последовательно. Мост Хея используется для измерений индук-тивностей очень большой величины. Неизвестные индуктивность и сопротивление рассчитываются по формулам 9.8. Мост Шеринга Мост Шеринга, показанный на рис. 9.5, б, используется для высоковольтных измерений. Неизвестную величину емкости конденсатора Сх находят из следующего выражения:

(9.13) Рис. 9.5. Мостовые схемы Хея и Шеринга.

9.9. Детектор мостового типа Схема, показанная на рис. 9.6, является как бы дальнейшим развитием схемы, изображенной ранее на рис.

2.12. Это схема демодулятора мостового типа ЧМ-стереосигналов (см. также разд. 15.3 и 15.7). Полный сигнал (без составляющих частотой 19 и 67 кГц) подводится к центральному отводу вторичной обмотки. Четыре диода образуют уравновешенную мостовую схему, на которую подается сигнал частотой 38 кГц, а также полный сигнал с боковыми полосами. Полный сигнал, подаваемый через центральный отвод к верхней и нижней точкам мостовой выпрямляющей системы, в любой момент времени изменяется в одинаковой фазе в этих точках. Однако в каждый момент времени к мосту прикладываются не совпадающие по фазе сигналы несущей частоты 38 кГц. При синфазности сигналов, поступающих к узлам моста, продетектированные сигналы имеют большую амплитуду, а в противном случае амплитуда выходного колебания мала. Конденсаторы С8 и С действуют в качестве фильтров и преобразуют выпрямленные импульсы в среднее напряжение, которое изменяется по частоте и амплитуде в соответствии с составляющей сигнала звуковой модуляции, которая содержалась в исходных левом (L) и правом (R) даналах.

Рис. 9.6. Детектор ЧМ-стереосигналов мостового типа.

Как показано на рис. 9.6, выходные звуковые сигналы выделяются на резисторах R15 и R16, точка соединения которых заземлена. Эти сигналы подаются затем на стандартные усилители звуковой частоты.

9.10. Мостовой выпрямитель Устройства выпрямления, детектирования и смешивания сигналов можно строить на основе мостовых схем.

Типичной схемой такого рода является схема диодного выпрямителя, показанная на рис. 9.7. В этой схеме переменное напряжение, прикладываемое к противоположным узлам диодного моста, преобразуется в пульсирующее выпрямленное напряжение, снимаемое с двух других узлов. При включении нагрузочного резистора RH выделяемое на нем пульсирующее напряжение является униполярным, что характерно для двухполупериодного выпрямления (см. гл. 10).

Рис. 9.7. Мостовой выпрямитель.

При действии на входе полуволны переменного напряжения положительной полярности зажим Т1 будет положителен по отношению к зажиму 7Y В этом случае электроны поступают на зажим Т2 и выводятся через зажим Т1. Электроны от зажима Т2 поступают на узел с диодами Д3 и Д4, причем только Д3 имеет нужное для проводимости направление включения. Поэтому электроны движутся, пройдя через этот диод, к узлу с диодами Д3.и Дь Полярность напряжения, приложенного к диоду Дь является запирающей, так что электроны от этого узла поступают на резистор в направлении, указанном на рис. 9.7 штриховой линией. При протекании тока через резистор RH на последнем возникает падение напряжения (полярность указана на рисунке). После прохождения через резистор электроны достигают узла с диодами Д2 и Д4. Но только на диоде Д2 действует отпирающее напряжение, позволяющее электронам двигаться к выводу Т1, потенциал которого положителен при данной полуволне переменного тока. Диод же Д4 оказывается запертым, так как потенциал T2 отрицателен.

В течение следующего полупериода «изменения входного напряжения потенциал зажима Т1 отрицательный, а зажима Т2 положительный. Поэтому электроны от зажима TI перемещаются к узлу с диодами Д] и Д2, и, поскольку нужную для проводимости полярность включения имеет лишь диод Д]? электроны проходят через этот диод и опять поступают на резистор RH, создавая на нем падение напряжения той же полярности, что и в первом случае. Далее электроны, как и прежде, поступают на узел с диодами Д2 и Д4, однако к зажиму Т2 они проходят через диод Д4. Таким образом, поскольку мостовой выпрямитель использует каждый полупериод входного переменного напряжения и поворачивает фазу колебаний отрицательной полярности для получения униполярного пульсирующего напряжения на выходе схемы, он обеспечивает двухполупериодное выпрямле ние.

9.11. Мостовой фазовый детектор Диоды и резисторы часто комбинируют в мостовые схемы, позволяющие определить разности фаз или частот двух сигналов. Такие схемы известны под названием фазовых частотных детекторов;

их используют в различной передающей и приемной аппаратуре, а также в приборах управления производственными процессами (см. рис. 2.4 и 4.6).

На рис. 9.8 показана основная мостовая схема фазового детектора. Предположим, что на входе 1 действует синусоидальный сигнал, который по частоте и фазе необходимо сравнить с импульсным сигналом, приложенным к входу 2. Когда частота или фаза одного сигнала отличается от частоты или фазы другого сигнала, то на зажиме X получают выходной сигнал. Если же такого различия в сигналах нет, то напряжение на выходе отсутствует (эта схема может быть преобразована путем изменения полярности включения одного диода таким образом, что на выходе будет формироваться постоянное напряжение, величина которого увеличивается или уменьшается при отличающихся входных сигналах).

Предположим, что при равенстве фаз двух сигналов выходной сигнал равен нулю, тогда временные диаграммы напряжений на диодах Д1 и Д2 должны иметь вид, показанный на рис. 9.8, б — г. Положительная полярность синхроимпульсов, поступающих на вход 2 (на узел с диодами Д1 и Д2), обусловливает проводимость обоих диодов. Импульсный ток обоих диодов поступает в узел с резисторами R1 и R2 и замыкается на землю через конденсатор С1 (штриховая линия на рисунке). Если проводимость обоих диодов одинакова и мостик уравновешен, то на зажимах X и У нет напряжения, поскольку эти зажимы идентичны тем узлам стандартной мостовой схемы, между которыми включается прибор для индикации равновесия.

Рис. 9.8. Мостовой фазовый детектор (а) и временные диаграммы напряжений на диодах (б — г).

На рис. 9.8,6 показаны составные сигналы на диодах Д1 и Д2. Такие сигналы получаются, если синхроимпульс поступает на диоды Д1 и Д2 точно в момент прохождения через нуль синусоидального сигнала.

Вследствие этого пиковое значение напряжения на диоде Дь достигаемое во время положительного полупериода, равно пиковому значению напряжения на Д2 во время отрицательного полупериода.

При изменении частоты любого из сопоставляемых сигналов между импульсным сигналом и синусоидальным колебанием возникает разность фаз (рис. 9.8, в). Здесь сравнительно с тем, что было на диаграмме на рис. 9.8,6, синусоидальный сигнал сдвинут вправо (запаздывает примерно на 1/4 периода), в ре зультате чего напряжение положительного пика на Д1 гораздо больше напряжения отрицательного пика на Д2.

Поэтому проводимость диода Д1 повышается, проводимость Д2 ослабляется, что нарушает равновесие мостовой схемы и вызывает появление разности потенциалов в точках X и У.

Аналогично этому, если синусоидальное колебание смещается влево (рис. 9.8,г), импульс на диоде Д1 имеет положительную полярность и совпадает с отрицательной полуволной синусоидального колебания. Однако на диоде Д2 импульс отрицательной полярности накладывается на отрицательную полуволну синусоидального колебания, вследствие чего проводимость Д2 возрастает. В результате между точками X и У опять появляется разность потенциалов, но обратной полярности. Поэтому выходное напряжение, возникающее при наличии разности фаз, может быть подано на реактансную схему (см. гл. 12), которая обеспечивает увеличение или уменьшение частоты генератора с регулируемой частотой или другой схемы, за счет чего осуществляется корректировка любого смешения частоты или фазы контролируемого сигнала. Конденсатор Ct (или другие фильтровые схемы) снижает уровень пульсирующих составляющих и обеспечивает постоянство уровня выходного сигнала, так что последний может служить в качестве источника смещающего напряжения для целей корректировки.

9.12. Мостовой антенный переключатель В телевизионных передающих системах формируются АМ-не-сущая изображения и ЧМ-несущая звука (см.

разд. 15.4 и рис. 15.5). Эти два сигнала для передачи должны поступить в антенну, причем для удобства используется лишь одна антенная система. Однако в этом случае между несущими с AM и ЧМ будет иметь место некоторое взаимодействие, поэтому для их разделения необходимо предусмотреть определенные меры.

Схема, показанная на рис. 9.9, позволяет использовать одну антенну для передачи несущих изображения и звука. Как показано на этой схеме, выходные колебания с фильтра боковых полос поступают на первичную обмотку L3 трансформаторной цепи, состоящей из L2 и L4. Подвод колебания к обмотке L3 обычно производится посредством коаксиального кабеля, и вследствие заземления одного проводника кабеля линия является несимметричной (внутренний проводник коаксиала имеет потенциал, отличный от потенциала земли, в то время как внешний проводник является экраном и обычно заземляется). Центральный отвод обмотки L преобразует несимметричный вход в секцию симметрированной линии, поэтому его называют симетрирующим отводом. Как показано на рисунке, несущая, модулированная сигналом изображения, поступает в цепь антенны и выделяется на двух противоположных узлах мостовой системы (данные о фильтре боковой полосы см. в разд.

5.16).

Рис. 9.9. Мостовой диплексор (антенный разделительный фильтр) телевизионной станции.

Как показано на рис. 9.9, два плеча мостовой схемы состоят из катушек индуктивности LI и L2 (это обычно секции коаксиального кабеля, имитирующие индуктивности). Два других плеча моста содержат сопротивления Ri и R2, представляющие излучающие элементы антенны. Такие элементы изображены в виде резисторов, поскольку излучение радиочастотной энергии антенной связано с потреблением мощности, вызываемым так называемым сопротивлением излучения.

Как показано на рисунке, несущая звука с ЧМ прикладывается к противоположным узлам моста, поэтому в мостовой схеме циркулируют как сигналы изображения, так и сигналы звукового сопровождения. Однако в случае уравновешенной схемы на реактивных сопротивлениях, так же как и на активных, напряжения равны.

Поэтому несущая, модулированная звуковыми сигналами, имеется в обоих излучающих элементах антенны.

Однако на узлах поступления несущей, модулированной сигналами изображения, имеется нулевое напряжение несущей, модулированной звуком, поскольку любые потенциалы в этих точках имеют одинаковую полярность, так что через L4 ток несущей, модулированной звуковыми сигналами, не протекает.

Аналогично этому несущая изображения, прикладываемая к противоположным точкам моста, также обеспечивает равные напряжения на плечах моста. Как и в случае несущей, модулированной звуком, несущая сигналов изображения также будет присутствовать в излучающих элементах антенны. Однако и в этом случае вследствие уравновешенности мостовой схемы в узлах, к которым прикладывается ЧМ-несущая звукового сопровождения, нет сигналов несущей изображения. Благодаря этому предотвращается возможность создания помех сигналам изображения.

Глава ИСТОЧНИКИ ПИТАНИЯ И СХЕМЫ УПРАВЛЕНИЯ 10.1. Общие сведеяшя об источниках питания Источники питания являются неотъемлемой частью всех электронных устройств. Они обеспечивают подачу в устройства электрической энергии при заданных уровнях напряжения и тока. Источники питания, кроме батареи, в общем случае осуществляют преобразование переменного напряжения сети в постоянное напряжение, которое используется для питания электронных устройств. Для создания требуемого уровня напряжения применяют трансформаторы, повышающие или понижающие сетевое напряжение. Чтобы получить источники с разными уровнями напряжения, которые могут потребоваться для питания различных схем одного устройства, трансформатор источника питания снабжают несколькими вторичными обмотками. Например, в телевизионном приемнике используется дополнительная низковольтная обмотка для питания цепи накала кине скопа.

В большинстве электронных устройств, эксплуатируемых в домашних условиях, таких, как магнитофоны, радиоприемники, высококачественные стереоусилители, применяются источники питания сравнительно небольших размеров. Даже для получения высокого напряжения в телевизионных приемниках для упрощения схемы используют специальные высокочастотные импульсы. Однако промышленные установки снабжаются источниками питания значительно больших размеров, так как потребляемая в этом случае мощность может составить величины порядка нескольких киловатт и более. Следовательно, в промышленных установках должны применяться специальные выпрямители, схемы управления и защитные устройства.

В промышленных установках для регулирования величины мощности, потребляемой определенной нагрузкой, например, электродвигателем, сварочным аппаратом и т. п., используют специальные устройства. В некоторых случаях управление состоит в простом включении и выключении источника питания. В других случаях схема управления должна обеспечивать подачу в нагрузку вполне определенной величины мощности.

Для того чтобы подать напряжение питания в нагрузку в точно заданные временные интервалы, часто применяют электронные переключатели. Используемые во всех указанных случаях схемы и рассматриваются в следующих разделах настоящей главы.

10.2. Однополупериодный выпрямитель Схема однополупериодного выпрямителя с одним выпрямительным диодом показана на рис. 10.1. В такой схеме источника питания трансформатор не используется и сетевое напряжение подается непосредственно на вход выпрямителя. Подобную схему источника питания применяют в дешевых электронных устройствах, хотя предпочитают использовать источники питания трансформаторного типа, поскольку они позволяют устранить общий заземленный провод сети переменного тока.

Рис. 10.1. Схема однополупериодного выпрямителя.

Для защиты выпрямителя от короткого замыкания или частичного короткого замыкания, которое может иметь место при выходе из строя конденсаторов или других элементов схемы, служит последовательно включенный предохранитель. Падение напряжения на последовательном резисторе зависит от величины протекающего через него тока;

при включении резистора выходное напряжение понижается. Кроме того, этот резистор служит для целей фильтрации. В схеме используются два фильтровых конденсатора с номинальным напряжением 200 В, что позволяет уменьшить опасность их пробоя при случайных выбросах напряжения.

Максимальное напряжение на этих конденсаторах может достигать амплитудного значения синусоидального переменного напряжения, которое равно произведению эффективного значения напряжения (117 В) на У2?

Следовательно, напряжение на первом конденсаторе фильтра может достигать значения 117-1,41 = 165 В. На втором конденсаторе из-за падения напряжения на последовательном резисторе максимальное напряжение будет несколько меньше.

Как показано на рис. 10.1, ток в схеме однополупериодного выпрямителя протекает не непрерывно, а периодически. Таким образом, в течение временных интервалов, когда ток не протекает, конденсаторы фильтра не заряжаются. (В схеме двухпо-лупериодного выпрямителя, как будет показано в следующем разделе, перерывов в протекании тока нет.) Поэтому при одинаковой величине тока, потребляемого от выпрямителя, колебания напряжения на конденсаторе будут более заметными в од-нополупериодной схеме по сравнению с двухполупериодной. По этой причине емкость конденсаторов фильтра должна быть в однополупериодной схеме больше, чтобы между циклами заряда на обкладках конденсаторов сохранялся заряд достаточно большой величины. При большой величине емкости конденсаторы выполняют функцию стабилизации выходного напряжения, т. е. обеспечивают относительное постоянство выходного напряжения выпрямителя при изменениях тока нагрузки.

При положительной полуволне переменного входного напряжения, действующего между верхним и нижним входными зажимами, электроны протекают через заземленный провод, нагрузку и далее через выпрямляющий кремниевый диод. Так как в фильтре обычно используются электролитические конденсаторы, их присоединение к схеме должно осуществляться с соблюдением указанной на корпусе полярности. При обратной полярности включения конденсаторов будет происходить их нагрев, а затем и выход из строя.

Так как конденсатор заряжается до напряжения, близкого к амплитудному значению входного переменного напряжения, то выходное напряжение в схеме однополупериодного выпрямителя оказывается несколько выше эффективного значения входного напряжения. Следует заметить, что величина выходного напряжения заметно зависит от сопротивления нагрузки, т. е. от величины тока, потребляемого нагрузкой. При большем токе нагрузки заряд конденсатора уменьшается и, следовательно, выходное напряжение понижается.

С целью лучшего подавления пульсаций выпрямленного тока последовательно с резистором включают дроссель, представляющий большое реактивное сопротивление. Такие дроссели применяют главным образом в промышленных установках;

в бытовых электронных приборах стараются их не использовать по соображениям стоимости и, кроме того, для устранения помех в соседних цепях, вызываемых магнитными полями дросселей.

Вместо дросселя обычно применяют дополнительные конденсаторы емкостью несколько сотен или даже тысяч микрофарад, которые обеспечивают приемлемое качество фильтрации и небольшой уровень фона.

10.3. Двухполупериодный выпрямитель Схема двухполупериодного выпрямителя показана на рис. 10.2. К первичной обмотке трансформатора для подавления помех подключен фильтр, составленный из двух конденсаторов по 0,05 мкФ каждый, причем средняя точка между ними присоединена к земле. Эти конденсаторы не должны быть однопо-лярными, а для уменьшения вероятности пробоя их номинальное напряжение должно быть — 200В. Выключатель обычно ставят перед конденсаторами с тем, чтобы при выключенном выпрямителе сетевое напряжение не подавалось на конденсаторы. В двухполупериодном выпрямителе вторичная обмотка трансформатора должна иметь центральный вывод, однако в случае мостовой схемы выпрямителя (см. рис. 9.7 и разд. 10.7) такого вывода не требуется.

На рис. 10.2 два выпрямляющих диода имеют общую точку, с которой снимается выпрямленное напряжение. В качестве фильтра в выпрямителе используются последовательный резистор и два конденсатора.

Однако в тех случаях, когда необходим низкий уровень пульсаций, на выходе выпрямителя можно добавить еще по одному резистору и конденсатору.

Рис. 10.2. Схема двухполупериодного выпрямителя.

Когда между верхним выводом вторичной обмотки и землей действует положительная полуволна переменного напряжения, то электроны будут протекать от заземленной точки нагрузки через резисторы R5 и R2, а также через налрузочные элементы, подключенные к выходам выпрямителя;

в этом случае на верхнем выводе резистора R2 устанавливается положительный потенциал относительно земли. Резисторы R2 и Rz образуют делитель напряжения, причем на выводе Т2 создается напряжение ( — 15 В), величина которого зависит от сопротивления нагрузки. При малой величине сопротивления нагрузки, присоединенной к выводу Т2, ток через резистор R2 возрастает, что приведет к уменьшению напряжения на этом выводе.

Резисторы R2 и Rz выполняют не только функцию делителя напряжения: через них протекает некоторый ток утечки независимо от того, подключена к выпрямителю нагрузка или нет. По этой причине цепь с этими резисторами (или одним резистором между выходными зажимами) называют цепью утечки. Указанные резисторы являются относительно небольшой нагрузкой для выпрямителя (ток этой цепи составляет 10 — 20% среднего тока нагрузки), но цепь утечки помогает стабилизировать работу выпрямителя и позволяет в некоторой степени отрегулировать выходное напряжение.

Во время действия положительной полуволны напряжения на верхней части вторичной обмотки трансформатора ток протекает через диод Д1, в то время как диод Д2 заперт. Когда же между нижним выводом обмотки и землей действует положительная полуволна напряжения, диод Д1 закрыт, а диод Д2 проводит ток, протекающий в направлении от нижнего вывода обмотки через цепь нагрузки и цепь утечки, резистор R1 и замыкается через землю. Таким образом, в течение каждого полупериода переменного напряжения образуется импульс выпрямленного тока. Так как выпрямленные импульсы тока следуют непосредственно один за другим, то требования к фильтру менее жесткие по сравнению с однополупериодным выпрямителем. Следовательно, сопротивления резисторов и емкости конденсаторов фильтра в двухполупериодной схеме будут меньшей ве личины.

Предохранитель, включенный последовательно со схемой фильтра, защищает выпрямитель и трансформатор от перегрузок, которые могут возникнуть при подключении низкоомных нагрузок или при пробое конденсаторов фильтра. Номинальный ток предохранителя выбирается такой величины, чтобы предо хранитель сгорал, если ток через него превысит примерно на 20% величину номинального тока нагрузки.

10.4. Удвоитель напряжения Схемы удвоения напряжения применяются в тех случаях, когда требуется получить более высокое напряжение, чем при использовании трансформатора или сети переменного тока. Удвоение напряжения — удобное средство для исключения трансформатора из схемы источника питания при сохранении при этом возможности получения существенно более высокого напряжения, чем может обеспечить сеть. Таким образом, схемой удвоения напряжения можно воспользоваться для повышения напряжения сети в два раза или для увеличения напряжения, снимаемого с трансформатора. На рис. 10.3 показана схема удвоения напряжения с трансформатором. Здесь назначение трансформатора состоит в изоляции схемы от сети в целях безопасности.

Как показано на рисунке, напряжение сети подается на первичную обмотку Lb в цепи которой имеется выключатель. Параллельно сети и обмотке подключен конденсатор Ci емкостью 0,02 мкФ, который шунтирует помехи, не пропуская их в схему удвоения. Поэтому такой конденсатор иногда называют фильтрующим.

Рис. 10.3. Схема удвоения напряжения.

Вторичная обмотка трансформатора соединена с двумя полупроводниковыми диодами Д1 и Д2.

Конденсаторы С2 и С3 служат для накопления зарядов и передачи их на выход выпрямителя.

Работу схемы легче понять, если предположить, что на обмотке LI имеется сигнал определенной полярности, и проследить, как при этом протекают электроны в схеме. Если, например, на L2 действует положительная полуволна напряжения, направленного от верхнего вывода к нижнему, то электроны пе ремешаются от нижнего вывода через цепь выпрямителя к верхнему выводу обмотки. При этом электроны проходят через конденсатор С2 и заряжают его до напряжения, близкого к максимальному напряжению, действующему на L2. От верхней обкладки С2 электроны протекают через диод Д1 к верхнему выводу L2.

Таким образом, в течение положительного полупериода переменного напряжения ток будет протекать только через диод Дь а диод Д2 в этом полупериоде будет закрыт. Во время действия следующей полуволны питающего напряжения потенциал верхнего вывода обмотки L2 отрицателен относительно нижнего вывода.

Теперь поток электронов будет проходить через диод Д2 и конденсатор С3, заряжая его также почти до мак симального напряжения, действующего на вторичной обмотке трансформатора. Далее электроны будут протекать от верхней обкладки конденсатора С3 к нижнему выводу обмотки L2. Таким образом, в течение каждого полупериода переменного напряжения конденсаторы С2 и С3 будут поочередно заряжаться.

Заметим, что выходное напряжение снимается с выхода сглаживающего дросселя LS. Конденсаторы С2 и С являются элементами фильтра, который служит для сглаживания пульсаций. Так как отрицательный выходной зажим заземлен, выходное напряжение снимается фактически с последовательно включенных конденсаторов С и С3. Следовательно, выходное напряжение равно сумме напряжений на конденсаторах С2 и С3. Таким образом, схема действует как удвоитель напряжения, подаваемого на ее вход. Однако величина выходного напряжения зависит от регулирующих свойств схемы. При большем токе нагрузки потребляется больший ток от конденсаторов С2 и С3. Если этот ток достаточно велик, то выпрямители не успевают подзаряжать конденсаторы для поддержания на них амплитудного значения напряжения и выходное напряжение падает.

При отсутствии нагрузки выходное напряжение получается максимальным.

Регулировочные свойства схемы (т. е. способность сохранять выходное напряжение близким к постоянной величине при изменении сопротивления нагрузки) улучшаются при увеличении емкости конденсаторов. В этом случае они могут запасать больший заряд и, следовательно, позволяют отбирать от выпрямителя ток большей величины без существенного уменьшения выходного напряжения.

10.5. Утроитель напряжения Схема утроения напряжения используется тогда, когда требуется повысить напряжение источника в три раза. Так же как и в схеме удвоения, в схеме утроения можно повысить напряжение сети, не применяя для этой цели трансформатор. Изолирующий трансформатор также можно использовать для обеспечения безопасности.

Поскольку выходное напряжение может в несколько раз превышать напряжение на вторичной обмотке трансформатора, можно воспользоваться более дешевым трансформатором.

Типичная схема утроителя напряжения показана на рис. 10.4, а. Для утроения напряжения в схему включены три диода и три конденсатора. Предположим, что на входе действует такая полуволна напряжения, при которой потенциал зажима Т1 положителен. При этом электроны перемещаются от зажима Т2 и заряжают конденсатор C1 (полярность указана на рисунке);

далее через диод Д1 электроны поступают к зажиму T1. В течение следующей полуволны напряжения потенциал Т1 станет отрицательным. Теперь диод Д! будет закрыт, так как на него будет подано напряжение обратной полярности, а диод Д2 окажется открытым, и заряжаться будет конденсатор С2. Этот конденсатор зарядится до напряжения, в два раза превышающего напряжение на С1.

Причина этого заключается в том, что конденсатор С2 заряжается не только под воздействием отрицательного входного напряжения, но и от напряжения на конденсаторе С1.

Увеличение напряжения на С2 можно понять, если обратиться к рис. 10,4,6. Здесь обозначены полярности входного напряжения и напряжения на С1, а стрелки показывают направление движения электронов. Заменим, что эти два источника напряжения действуют как последовательно включенные, поэтому напряжение на С будет равно сумме указанных напряжений.

Рис. 10.4. Схема утроения напряжения (стрелки указывают направление-движения электронов).

В течение третьего полупериода входного напряжения потенциал зажима Т1 станет вновь положительным.

При этом конденсатор C1 опять зарядится до напряжения, равного амплитуде входного напряжения. При положительной полуволне напряжения на входе диод Д3 также будет открыт (эквивалентная схема при открытом диоде Д3 показана на рис. 10.4,в). Напряжение на конденсаторе С3 будет равно сумме напряжения на С2 и входного напряжения. Заметим, что обратно к зажиму Т1 электроны движутся через конденсатор С2, включенный последовательно. Так как конденсатор С2 заряжен до напряжения, которое при слабом нагрузочном токе почти равно удвоенной амплитуде входного напряжения, то напряжение, до которого заряжается конденсатор Сз, почти в три раза больше амплитуды сетевого напряжения (при отсутствии нагрузки). Так же как и в схеме удвоения, выходное напряжение здесь зависит от тока нагрузки, который несколько разряжает конденсаторы.

В качестве фильтра в данной схеме используются дроссель LI и конденсатор С4. Для улучшения регулировочных характеристик схемы иногда применяют сопротивление утечки Ri, которое потребляет от источника небольшой ток постоянной величины.

При необходимости в схеме на рис. 10.4,а можно получить и удвоенное напряжение, которое следует снимать с конденсатора С2. Как и в схеме удвоения напряжения, регулировочные характеристики схемы можно улучшить путем увеличения емкости конденсаторов.

10.6. Высоковольтные схемы Высокие напряжения порядка нескольких киловольт чаще всего применяются в промышленных электрических установках, но в некоторых электронных приборах бытового назначения также используется высокое напряжение. Две типичные схемы высоковольтных источников напряжения показаны на рис. 10.5.

В схеме на рис. 10.5,а высокое напряжение (15 кВ) получается путем непосредственного использования трансформатора. Такая схема применяется для образования дугового разряда в камере сгорания домашних отопительных систем. В этих системах топливо, смешанное с воздухом под высоким давлением, подается в камеру сгорания, где оно испаряется и легко воспламеняется от искры.

Термостат является чувствительным элементом, который определяет точку включения нагревателя и интервал времени, & течение которого первичная обмотка высоковольтного трансформатора должна быть разомкнута, что осуществляется при помощи реле L3. Контакты реле замыкаются и размыкаются в соот ветствии с напряжением на низковольтной обмотке LS. Когда температура в помещении, где находится термостат, снизится до определенного значения, термостат замыкает реле и в искровом промежутке образуется дуговой разряд. Одновременно с этим топливный насос подает порцию топливной смеси в камеру сгорания, которая воспламеняется от искры.

Высоковольтная (15 кВ) обмотка трансформатора изготовляется из очень тонкой проволоки, обладающей значительным сопротивлением, котррое ограничивает величину тока, и это обеспечивает дополнительную безопасность системы. Так как в момент образования искры вторичная обмотка замыкается накоротко, то она должна выдерживать протекающий при этом небольшой ток.

Рис. 10.5. Схемы высоковольтных источников напряжения.

Схема, показанная на рис. 10.5,6, является частью высоковольтной схемы цветного телевизионного приемника (рис. 2.11). Импульсы, вырабатываемые выходным каскадом строчной развертки, поступают на первичную обмотку выходного строчного трансформатора. Во BTqpH4Hofi обмотке напряжение этих импульсов повышается. Для выпрямления полученных импульсов используют несколько высоковольтных кремниевых диодов. Затем постоянное напряжение подается на второй анод кинескопа. Как упоминалось в гл.

2, второй анод представляет собой проводящее покрытие внутри кинескопа, которое вместе с покрытием на внешней стороне кинескопа образует конденсатор. Диэлектриком конденсатора является стекло корпуса кине скопа. Этот конденсатор используется как фильтр для подавления пульсаций.

Так же, как и в схеме на рис. 10.5,а, потребляемый ток в данной схеме очень мал, и вторичную обмотку делают из очень тонкого провода. Иногда в целях повышения безопасности в схему включают последовательный резистор. При потреблении слишком большого тока от схемы падение напряжения на пос ледовательном резисторе возрастет и, следовательно, выходное напряжение уменьшится.

10.7. Мостовой выпрямитель Мостовая схема применяется в тех случаях, когда требуется производить двухполупериодное выпрямление, имея в своем распоряжении трансформатор без центрального вывода от вторичной обмотки.

В выпрямителе мостового типа (рис. 10.6) используются четыре полупроводниковых диода, включенных по мостовой схеме, за которыми следует обычный фильтр для подавления пульсаций выходного напряжения.

Рис. 10.6. Схема мостового выпрямителя.

Как и ранее, предположим, что полярность полуволны напряжения, появляющегося на вторичной обмотке, такова, что верхний вывод обмотки имеет положительный потенциал, а нижний — отрицательный. При этих условиях электроны будут протекать от нижнего вывода обмотки трансформатора к диодам Дз и Д4. Поскольку в данном полупериоде диод Д4 является непроводящим, электроны будут двигаться через диод Д3 и далее через земляную шину и схему фильтра к диодам Д2 и Д4. Теперь электроны могут проходить через любой диод, но, так как они должны вернуться к положительному выводу обмотки L2, они будут протекать только через диод Д2. Направление потока электронов показано стрелкой около резистора R2, и соответствующая полярность выходного напряжения указана на рисунке. „, В течение второго полупериода верхний вывод обмотки L2 становится отрицательным, а нижний — положительным. Теперь электроны будут двигаться к диодам Д1 и Д2, но диод Д2 включен в непроводящем направлении. Поэтому электроны пройдут через диод Д1 опять к земляной шине, через фильтр т резистор Ri в том же направлении, что и во время первого полупериода Электроны, достигшие диодов Д2 и Д4, будут теперь проходить через диод, Д4 к положительному нижнему выводу обмотки L2. Таким образом, схема выпрямляет положительную и отрицательную полуволны переменного напряжения, т. е. осуществляет двухполупериодное выпрямление, как и в схеме с центральным выводом вторичной обмотки трансформатора.

10.8. Стабилизаторы напряжения Термин «стабилизация напряжения» в отношении источников питания означает относительную величину изменения выходного напряжения при изменении тока нагрузки, выраженную в процентах. Коэффициент стабилизации представляет собой отношение разности выходных напряжений при минимальном и максимальном токе, потребляемом от источника питания, к напряжению при максимальной нагрузке.

Выражение для коэффициента стабилизации в процентах записывается в виде (10.1) где EQ — выходное напряжение без нагрузки и Еп — выходное напряжение при максимальной нагрузке.

Чтобы сделать минимальными изменения выходного напряжения при различных токах нагрузки, применяют различные методы стабилизации. Сложность схемы стабилизации зависит от степени стабилизации, принципиально достижимой и требуемой в данной системе. В промышленных электронных установках применяются полупроводниковые стабилизаторы, и в некоторых случаях могут использоваться дроссели с переменной индуктивностью на входе фильтра (рис. 10.7,а). Такие дроссели с ферромагнитным сердечником легко переходят в режим насыщения при увеличении протекающего через них тока;

при этом индуктивность, а следовательно, и индуктивное сопротивление уменьшается. Для обеспечения нормальной работы при ста бильном напряжении выходной ток, протекая через катушку, вызывает на ней определенное падение напряжения, величина которого зависит от реактивного и омического сопротивлений катушки. При увеличении потребляемого тока при изменении сопротивления нагрузки катушка переходит в состояние насыщения и ее реактивное сопротивление уменьшается. В результате падение напряжения на катушке понизится, а выходное напряжение возрастет.

Кроме указанных дросселей, для целей стабилизации напряжения полезно применять резисторы утечки и конденсаторы фильтра повышенной емкости. Существенное улучшение качества стабилизации обеспечивается применением полупроводниковых стабилизирующих диодов — стабилитронов, или диодов Зенера (рис. 10.7).

Рис. 10.7. Схемы стабилизаторов с дросселем переменной индуктивности (а) и со стабилитронами (б и г), а также характеристика зенеровского диода (в).

Как можно видеть на рис. 10.7,6, стабилитрон включают последовательно с ограничивающим резистором RI, а стабилизированное напряжение снимается с зажима Т2. Такой диод может работать в качестве стабилизатора напряжения благодаря своей характеристике (рис. 10.7,в). При подаче на стабилитрон прямого напряжения ток через него увеличивается с ростом напряжения, т. е. его поведение ничем не отличается от поведения обычного диода. Однако при подаче обратного напряжения сопротивление стабилитрона сначала очень велико и через него протекает ток порядка нескольких микроампер. По достижении некоторой критической точки внутреннее сопротивление диода резко снижается почти до нуля. Резкое уменьшение сопротивления диода вызывает резкое увеличение тока до такой величины при которой обычный кремниевый диод таких же размеров безусловно, вышел бы из строя. Однако этот явный пробой не нарушает работоспособности диода. Это происходит потому что при определенной величине обратного напряжения носители преодолевают внутренний потенциальный барьер полупроводникового диода, приводя к появлению проводимости диода в обратном направлении. Если теперь обратное напряжение уменьшится до нуля, то внутренний потенциальный барьер вновь восстановится и диод перейдет в нормальный режим работы.

Точка пробоя, показанная на рис. 10.7,6, находится в пределах некоторой области напряжений (области пробоя), и ее положение в этой области можно регулировать в процессе производства путем изменения удельного сопротивления кремниевого материала.

В области пробоя протекание большого тока не сопровождается изменением падения напряжения на диоде.

Следовательно это падение напряжения практически остается постоянным в точке пробоя. Благодаря такой характеристике стабилитрон можно использовать в схеме стабилизации напряжения (рис 10.7,6) Сопротивление резистора Ri подбирают таким образом чтобы удерживать диод в области пробоя. Заметим, что в этой схеме диод включается не так, как это обычно делается в выпрямительных схемах: его присоединяют таким образом чтобы на него подавалось напряжение обратной полярности. Следовательно, когда диод находится в области пробоя, падение напряжения на нем будет оставаться почти постоянным при небольших изменениях тока, благодаря чему на зажимах Т2 и Т3 обеспечивается стабилизированное выходное напряжение Кроме того стабилитроны могут применяться также и для стабилизации переменного напряжения (рис.

10.7,г). В этой схеме два стабилитрона включены навстречу друг другу (встречно) и каждый из них работает в качестве стабилитрона в течение полупериода. Обычно для этой цели промышленность выпускает специальные сдвоенные диоды, которые для обеспечения симметрии подбираются с одинаковыми характеристиками.

10.9. Прерыватели HI преобразователи Часто возникает необходимость в преобразовании в некоторых промышленных установках невысокого постоянного напряжения в переменное. Это преобразование выполняется при помощи прерывателей. Такие устройства называют также вибропреобразователями. Основной частью устройства является вибрирующий металлический стержень, который колеблется между двумя контактами и прерывает постоянный ток, преобразуя его в импульсные колебания. Импульсные колебания можно передать из первичной обмотки трансформатора во вторичную. В результате на вторичной обмотке трансформатора получается эквивалентное переменное напряжение, которое может иметь повышенную или пониженную амплитуду по сравнению с ис ходным постоянным напряжением. Если же на выходе необходимо иметь постоянное напряжение, то напряжение с вторичной обмотки трансформатора можно выпрямить обычным способом.

Как показано на рис. 10.8, управляющий сигнал переменного тока подается на обмотку L1 вибратора.

Переменное магнитное поле вызовет колебания металлического стержня вибратора, замыкая попеременно то верхний, то нижний контакт. Таким образом, переменный ток прерывается, и напряжение прикладывается то к верхней секции первичной обмотки L2, то к нижней L3 относительно центрального вывода. Магнитное поле первичной обмотки индуцирует напряжение во вторичной обмотке L4, амплитуда которого зависит от коэффициента трансформации « входного постоянного напряжения. Частота выходного напряжения определяется частотой управляющего напряжения, подаваемого на обмотку Lt.

Рис. 10.8. Схема с прерывателем.

Рис. 10.9. Схема преобразователя.

Термины «преобразователь» и «инвертор» также применяют к таким схемам, несмотря на то что инвертором называют схему, инвертирующую характеристики сигнала. Инвертор, преобразующий постоянный ток в переменный, называют конвертором, в том случае, если выходное напряжение выпрямляется и опять получается напряжение постоянного тока (например, от источника постоянного тока 12 В получают постоянное напряжение 24В). Типичная схема такого вида, применяемая для преобразования постоянного напряжения б В в постоянное напряжение 12В, изображена на рис. 10.9. Принцип действия схемы заключается в использовании генератора, например, релаксационного типа (см. гл. 4) для получения переменного (импульсного) напряжения, которое затем повышается или по-нижается до необходимой величины в зависимости от требуемого напряжения постоянного тока, а затем производится выпрямление этого напряжения.

В рассматриваемой схеме используется блокинг-генератор (см. также рис. 4.9). Для поддержания колебаний в схеме трансформаторная обмотка обратной связи L2 должна подключаться определенным образом, чтобы обеспечить фазовые соотношения. При помощи переменного резистора осуществляется подстройка частоты колебаний. Напряжение с обмотки L3 затем выпрямляется диодом Д1 и фильтруется при помощи конденсатора С1. Большую выходную мощность в схеме можно получить, если применить мощный транзистор и достаточно мощный трансформатор, обмотки L1 и L3 которого способны выдерживать большие токи.

10.10. Схемы с регулируемым напряжением Если требуется источник с регулируемым напряжением, то в простейшем случае можно на выходе обычного источника включить параллельный переменный резистор (рис. 10.10,а).

Рис. 10.10. Схемы источников с регулируемым выходным напряжением.

Такая схема будет удовлетворительно работать только при небольших токах — порядка нескольких миллиампер. Если же потребляемый ток имеет большую величину (единицы ампер), то возникает проблема с применением мощного резистора. Так как переменный резистор должен осуществлять управление мощностью в несколько ватт, он должен иметь большие размеры.

Более удовлетворительные результаты позволяет получить схема регулировки, в которой используются один или несколько транзисторов. В такой схеме обеспечивается достаточно большой диапазон регулировки, и схема управления потребляет небольшую мощность. Схема такого типа изображена на рис. 10.10,6. Здесь резисторы R2 и R3 образуют делитель напряжения на выходе фильтра. Резистор R2 является переменным, причем с приближением движка к земле база транзистора становится более отрицательной по отношению к положительному потенциалу эмиттера, благодаря чему обеспечиваются условия, при которых транзистор сильнее открывается. Таким образом, при помощи переменного резистора R2 можно изменять проводимость транзистора и, следовательно, регулировать выходное напряжение.

Транзистор в схеме должен быть достаточно мощным, чтобы обеспечить управление напряжением и током определенной системы. Конденсатор С2 является вторым фильтром, который улучшает степень фильтрации, выполняемой конденсатором С1. Резистор R4 служит сопротивлением утечки, и через него протекает ток, величина которого составляет примерно 5% тока нагрузки.

10.11. Схема с тиристорами Тиристор, или кремниевый управляемый прибор, представляет собой специальный тип полупроводникового диода, который переводится в открытое состояние путем подачи напряжения на управляющий электрод.

Тиржгщры выпускаются различных размеров и номинальных мощностей, что позволяет использовать их для управления определенными уровнями мощности. Например, прибор размером 13X26 мм может управлять током — 20 А при напряжении — 400 В.

Характеристики тиристора имеют такую же полярность, как и у обычного кремниевого выпрямительного диода при подаче напряжения между анодом и катодом. Однако характеристики тиристора по сравнению с диодами имеют большое преимущество, так как позволяют путем подачи небольших напряжений и при очень малой мощности управлять током значительной величины.

Схема, в которой используется тиристор, приведена на рис. 10.И,а, а на рис. 10.11,6 показано условное обозначение тиристора. При подаче на вход постоянного напряжения тиристор обычно остается в закрытом состоянии и ток через него и, следовательно, через нагрузку не протекает. Если же подать запускающее напряжение между управляющим электродом и катодом (рис. 10.11, а), то тиристор переводится в полностью открытое состояние. При этом основное сопротивление для источника постоянного напряжения составляет сопротивление нагрузки. После запуска тиристора, даже если отключить запускающее напряжение, прибор все равно остается в открытом состоянии, и ток продолжает протекать через нагрузку. Таким образом, запуск можно осуществлять короткими импульсами и тем самым подавать в налрузку ток большой величины.

Хотя после запуска тиржгщра напряжение на управляющем электроде перестает действовать, все же можно перевести тиристор в закрытое состояние путем изменения приложенного к нему постоянного напряжения.

Выключение можно осуществить или путем отключения поданного на тиристор напряжения, или путем изменения его полярности на обратную.

Рис. 10.11. Схема включения тиристора (а) и условные обозначения обычного тиристора (б) и тиристора с двумя управляющими электродами (в).

Переменное напряжение также можно использовать как в качестве управляющего сигнала, так и управляемого. При подаче на управляющий электрод переменного напряжения, которое находится в фазе с напряжением, приложенным между анодом и катодом, тиристор будет открываться во время каждого положительного полупериода напряжения на его аноде. Если разность фаз между управляющим и управляемым напряжениями будет постепенно изменяться, то тиристор будет открыт в течение части положительного полупериода, уменьшая тем самым мощность, передаваемую в нагрузку. Фазосдвигающая цепь, описанная в разд. 10.12, может использоваться для управления мощностью, поступающей в нагрузку.

Для выделения постоянного напряжения на нагрузке полученное пульсирующее напряжение можно подать на обычный фильтр, состоящий из последовательного резистора или дросселя и параллельного конденсатора.

Путем введения в тиристор дополнительного управляющего электрода можно получить кремниевый управляемый переключатель (рис. 10.И,в). Такой прибор может запускаться импульсами либо положительной, либо отрицательной полярности. В отличие от обычного тиристора переключатель можно перевести в закрытое состояние путем подачи сигнала на управляющий электрод.

Рис. 10.12. Применение тиристора в телевизионном приемнике в качестве высоковольтного ограничителя.

Кроме управления мощностью, тиристор можно также использовать в качестве высоковольтного ограничителя (рис. 10.12). Такая схема применяется в цветных телевизионных приемниках (например, в некоторых моделях фирмы Sylvania) для того, чтобы избежать появления слишком больших напряжений, которые могут нарушить работоспособность элементов или вызвать генерирование рентгеновского излучения.

Управление осуществляется в цепи усилителя строчной развертки, выполненного на транзисторе n — р — n типа. В схеме ограничения используются стабилитрон Д1 и тиристор Д2. Вывод стабилитрона, находящийся под потенциалом 120В, связан со схемой, которая вырабатывает высокое напряжение. Если высокое напряжение по какой-то причине возрастет до уровня, превышающего нормальный, то при 135 В произойдут пробой стабилитрона и запуск тиристора. При этом тиристор открывается, его малое сопротивление зашунтирует входную базовую цепь усилителя строчной развертки, изменится смещение на базе транзистора и его проводимость уменьшится. В результате схема строчной развертки и связанный с ней источник высокого напряжения перестают работать до тех пор, пока путем регулировки не будет устранена причина, вызвавшая повышение высокого напряжения. Если же причина заключается в выходе из строя какого-либо элемента схемы, который не может быть восстановлен регулировкой, то вновь произойдет запуск тиристора и высоковольтная часть опять будет переведена в нерабочее состояние.

10.12. Фазосдвигающая цепь Фазосдвигающая цепь вырабатывает на выходе сигнал, фаза которого отличается от фазы входного сигнала.

Поэтому такую схему полезно применять в тех случаях, когда требуется получить сдвиг сигнала по фазе, например в схеме управления тиристором.

Фазосдвигающая цепь приведена на рис. 10.13,а. Здесь вторичная обмотка L2 трансформатора имеет центральный вывод, что обеспечивает разность фаз 180° между напряжениями на верхнем и нижнем выводах.

Дополнительная катушка индуктивности L3, включенная последовательно с переменным резистором Rь шунтирует вторичную обмотку тpaнсфоpмaтоpa и позволяет осуществлять регулировку сдвига фазы. Таким образом, если напряжение на анод тиристора подавать от той же линии;

к которой подключена первичная обмотка, то фазу сигнала на управляющем электроде можно регулировать при помощи переменного резистора R1.

Рис. 10.13. Фазосдвигающая цепь (а) и диаграммы напряжений и токов в тиристоре (б и в).

Когда напряжение на управляющем электроде тиристора Еу и напряжение на его аноде а синфазны (рис.

10.13,6), то в течение положительного полупериода действия Е& тиристор будет полностью открыт и через него будет протекать ток 1а. Когда же сигналы на аноде тиристора и его управляющем электроде отрицательной полярности, тиристор будет находиться в закрытом состоянии, так как отрицательное напряжение на аноде препятствует протеканию тока.

Если напряжения на управляющем электроде и аноде сдвинуты на 180Р, то тиристор не сможет перейти в открытое состояние, так как в то время, пока напряжение на управляющем, электроде имеет положительную полярность, напряжение на аноде будет отрицательным, и наоборот. Таким образом, мощность на выходе тиристора можно регулировать от максимальной величины, которая получается на выходе однополупериод ного выпрямителя, до нуля. При разности фаз, изменяющейся от 0 до 180°, мощность в нагрузке будет изменяться также от максимального значения до нуля. Промежуточное значение разности фаз показано на рис.

10.13,в, здесь представлен случай сдвига фаз, соответствующий протеканию тока примерно в течение половины положительного полупериода анодного напряжения.

10.13. Схема с игнитроном Игнитрон представляет собой электронную лампу, временем пребывания которой в открытом состоянии можно управлять. В игнитроне находится жидкая ртуть, контакт с которой имеет вывод во внешнюю цепь (рис.

10.14,а). Кроме того, в игнитроне находятся анод и электрод поджига;

кончик электрода, изготовленный из карбида кремния или карбида бора,, погружен на небольшую глубину в ртуть. Если между электродом поджига и ртутью есть некоторая разность потенциалов,, то образуется искра, в результате чего возникает электронная эмиссия. При положительном потенциале на аноде электроны,, двигаясь к аноду, будут сталкиваться с атомами газа в лампе,. т. е. начнется процесс ионизации.

Рис. 10.14. Игнитрон (а) и схема с его применением (б).

Когда через игнитрон протекает ток, падение напряжения на нем невелико;

следовательно, эта лампа имеет небольшое внутреннее сопротивление. Игнитрон обладает рядом преимуществ: опасность пробоя между анодом и катодом невелика, так как максимальное обратное напряжение имеет место только в интервалы времени, когда внутреннее сопротивление лампы имеет большую величину;

не требуется энергии для подо грева катода;

как и в случае тиристора, запуск игнитрона может производиться в любой точке периода переменного напряжения, что позволяет осуществлять управление выходной мощностью. Поскольку ртуть имеет неолраниченный срок службы и может выдерживать большие перегрузки, игнитрон находит широкое применение в мощных промышленных установках. Вследствие присутствия ртути лампа должна работать в вертикальном положении.

Схема с применением игнитрона изображена на рис. 10.14,6. Диод с указанной на рисунке полярностью включен последовательно с ограничительным резистором Ri между анодом и электродом поджига. Источник переменного тока соединен последовательно с нагрузкой Rн и игнитроном, т. е. так же, как и в схеме с тиристором. Во время действия положительного полупериода переменного напряжения диод Д[ и игнитрон HI находятся в открытом состоянии. Однако игнитрон не может открываться до тех пор, пока электрод поджига не вызовет электронную эмиссию. Когда диод находится в открытом состоянии, происходит электрический разряд между электродом и ртутью, и возникающая в результате электронная эмиссия вызовет ионизацию и протекание тока. Во время отрицательной полуволны переменного напряжения и игнитрон, и диод находятся в закрытом состоянии. Вместо диода Д( управляющее напряжение, как и в схеме с тиристором, может вырабатываться фазосдвигаю-щей цепью (см. рис. 10.13). Показанная на рис. 10.14 схема имеет невысокий к. п.

д., так как в ней используется однополу-периодное выпрямление. Полученное напряжение перед подачей в нагрузку для уменьшения пульсаций может быть отфильтровано. Для повышения к. п. д. можно применять схему с игнитронами, выполняющую двухполупериодное выпрямление, которую и рассмотрим в следующем разделе.

10.14. Двухполупериодная схема с игнитронами По сравнению со схемой однополупериодного выпрямления с игнитроном, рассмотренной выше, Двухполупериодная схема (рис. 10.15, а) имеет более высокий к. п. д. Как и в обычной схеме двухполупериодного выпрямителя, игнитроны открываются поочередно, и ток через нагрузку Rн протекает всегда в одном направлении, показанном на рисунке стрелкой (полярность напряжения на нагрузке также указана). Как и в других схемах источников питания, амплитуду пульсаций можно уменьшить, если применить соответствующие фильтры.

Во время действия положительного полупериода напряжения на верхней половине вторичной обмотки L трансформатора на аноде игнитрона И1 также действует положительное напряжение. Если в это же время на диод R1 подано положительное напряжение, то игнитрон И1 перейдет в открытое состояние. В течение этого времени на аноде второго игнитрона И2 напряжение будет отрицательным, и он будет находиться в закрытом состоянии. Электроны будут двигаться от ртути к аноду И1 и через резистор нагрузки Rн. Когда переменное напряжение на верхней половине обмотки Z2 станет отрицательным, то на нижней половине этой обмотки оно будет положительным. При этом игнитрон И1 будет закрыт, а игнитрон И2 может перейти в открытое состояние при запуске напряжением соответствующей полярности через диод Д2. При открытом игнитроне И2 электроны будут протекать от ртути к аноду и через нагрузку в том же направлении, что и в предыдущем полупериоде.

Длительностью интервалов времени, в течение которых игнитроны находятся в открытом состоянии, можно управлять путем изменения фазы напряжения, подаваемого на обмотку L4. Так как это напряжение появляется на обмотке L3 со сдвигом фазы относительно центрального вывода, диоды Д1 и Д2 поочередно осуществляют запуск то одного, то другого игнитрона.

Рис 10.15. Схемы двухполупериодного выпрямителя на игнитронах.

Если требуется питать нагрузку переменным током, то в этом случае можно использовать схему из двух игнитронов, показанную на рис. 10.15,6. В этой схеме в течение очередных полупериодов направление тока в нагрузке меняется на противоположное. Таким образом, когда на входных зажимах Т1 и Т2 действует положительная полуволна напряжения, напряжение на аноде И2 также положительное, а на катоде отрицатель ное. При этом и на аноде HI напряжение отрицательное, вследствие чего он не может открыться. Если полярность напряжения на диоде Д2 такова, что И2 будет переведен в открытое состояние, то электроны будут протекать от ртути к аноду И2 и через сопротивление нагрузки к зажиму Т1. Во время отрицательного полупериода на входных зажимах отрицательное напряжение будет приложено к аноду И2 и катоду И1. В этих условиях игнитрон И2 открываться не может. В это время на аноде игнитрона HI напряжение будет положительным, а на его катоде — отрицательным. Следовательно, при подаче соответствующего напряжения на диод Д1 можно осуществить запуск этого игнитрона. При открытом игнитроне HI электроны через сопротивление нагрузки будут протекать вниз, т. е. в противоположном направлении по сравнению с предшествующим полупериодом. Таким образом, ток через нагрузку будет переменным.

Глава ЦЕПИ ПРЕОБРАЗОВАНИЯ ФОРМЫ СИГНАЛОВ 11.1. Интегрирующая цепь В электронных устройствах часто бывает необходимо изменить прямоугольные импульсы или сигналы другой формы таким образом, чтобы получить сигнал требуемой формы. Указанное изменение может заключаться в сохранении ВЧ-состав-ляющих сигнала и ослаблении НЧ-составляющих, в ослаблении только ВЧ-составляющих, в изменении амплитуды и формы сигнала путем ограничения и т. д.

Важнейшей цепью такого типа является интегратор, который широко применяется в электронных вычислительных схемах, в системах развертки телевизионных приемников и в других случаях, когда требуется ослабить ВЧ-составляющие импульсов. Практически интегрирующую цепь (рис. 11.1, а) можно рассматривать как фильтр нижних частот. При воздействии синусоидальных сигналов интегрирующая цепь сильнее ослабляет сигналы более высоких частот (и вносит некоторый фазовый сдвиг). В случае импульсных или прямоугольных сигналов их форма изменяется благодаря фильтрации ВЧ-составляющих сигналов.

Когда к конденсатору приложено постоянное напряжение, то в процессе заряда конденсатора электроны подходят к одной пластине и уходят от другой. При подаче переменного напряжения, полярность которого периодически меняется на обратную, конденсатор будет перезаряжаться с частотой приложенного напряжения.

Перемещение электронов в цепи конденсатора образует электрический ток через конденсатор. Математически напряжение на конденсаторе и ток через него связаны соотношением (11.1) где ес — напряжение на конденсаторе, С — емкость конденсатора и ic — ток через конденсатор.

Это уравнение показывает, что напряжение на конденсаторе возрастает с увеличением времени протекания тока через него.

Рис. 11.1. Интегрирующие цепи (а и г) и форма импульса на входе (б) и выходе (б) простейшей интегрирующей цепи.

В практических схемах интеграторов постоянная времениRC велика по сравнению с длительностью воздействующего импульса. В этом случае приращение напряжения ее на конденсаторе мало по сравнению с напряжением е, приложенным к интегрирующей цепи. Тогда можно записать приближенное равенство (11.2) Таким образом, выходное напряжение интегратора пропорционально интегралу входного тока e/R. Это можно объяснить, если обратиться к рис. 11.1,6 и в. При подаче на вход схемы положительного импульса крутой фронт импульса действует на интелратор в течение очень короткого промежутка времени. Затем в течение времени, равного длительности импульса, действует напряжение, соответствующее плоской вершине импульса. Напряжение на конденсаторе нарастает по экспоненциальному закону. За время, равное постоянной времени цепи, напряжение на конденсаторе достигнет примерно 63% максимального значения, а полностью конденсатор зарядится примерно в течение пяти постоянных времени. Так как постоянная времени интегрирующей цепи велика по сравнению с длительностью импульса, напряжение на конденсаторе не достигает максимального значения, а постепенно нарастает до некоторой величины (рис. 11.1, в).

По окончании действия входного импульса конденсатор начнет разряжаться через резистор RI и входную цепь. Разряд протекает также медленно по рравнению со спадом входного импульса, и в результате формируется на выходе сигнал, форма которого показана на рис. 11.1, в.

Как уже указывалось, цепь интегратора эквивалентна фильтру нижних частот, так как пропускает НЧ составляющие импульса и ослабляет ВЧ-составляющие. Форма сигнала показанная на рис. 11.1, в, представляет импульс, в котором ВЧ-составляющие подавлены. Действительная форма выходного импульса зависит от соотношения постоянной времени интегратора и длительности входного импульса.

Если импульсы на входе интегратора имеют длительность, превышающую интервалы между ними (рис. 11. г), то напряжение на конденсаторе будет постепенно нарастать. Такую схему можно использовать в качестве делителя частоты, так как уровень запуска релаксационного генератора будет достигаться только после определенного числа импульсов, поданных на вход Таким образом, импульсы с более высокой частотой по вторения можно.использовать для синхронизации релаксатора, имеющего более низкую частоту. Подобным образом при помощи импульсной последовательности можно постепенно повысить напряжение на конденсаторе и осуществлять им запуск тиристора в заданный момент времени. Например, схема, показанная на рис. 11.1,2, используется в телевизионных приемниках для синхронизации генератора кадровой развертки.

Последовательностью импульсов синхронизируют высокочастотный генератор строчной развертки и этими же импульсами, пропущенными через интегратор, синхронизируют более низкочастотный генератор кадровой развертки.

В интегрирующей схеме на рис. 11.1, г используются два резистора и два конденсатора, постоянная времени этой цепи равна т=R1(C1+С2)+R2C2. (11.3) Интегрирующую цепь можно также построить, располагая катушкой индуктивности и резистором. Для этого в схеме на рис 11.1,a резистор R1 следует заменить катушкой индуктивности а конденсатор C1 — резистором. Однако, поскольку катушка индуктивности имеет активное сопротивление, схема с резистором и конденсатором более широко применяется на практике.

11.2. Дифференцирующая цепь В дифференцирующей цепи (рис. 11.2, а) постоянная времени должна быть малой по сравнению с длительностью импульсов. Эту цепь применяют в тех случаях, когда импульсы сравнительно большой длительности необходимо преобразовать в короткие запускающие импульсы с крутым фронтом. Цепь сохраняет крутой фронт импульса в той же полярности и по существу ведет себя как фильтр верхних частот, ослабляющий низкочастотные и пропускающий высокочастотные составляющие импульса.

При подаче напряжения на конденсатор протекающий через него ток пропорционален производной приложенного к конденсатору напряжения ес:

(11.4) При малой постоянной времени сопротивление резистора оказывается значительно больше реактивного сопротивления конденсатора. Поэтому выходное напряжение, равное падению напряжения на резисторе, приближенно выражается формулой (11.5) На рис. 11.2,6 и в показаны соответственно формы импульса на входе и выходе дифференцирующей цепи.

От начального момента действия импульса и в течение всей его длительности к входу схемы прикладывается постоянное напряжение. Если при подаче входного импульса конденсатор Ci не был заряжен, то в первый момент через конденсатор, а также через рези стор R1 будет протекать большой ток. Таким образом, на рези сторе сразу же появляется большое падение напряжения, благодаря чему на выходе очень быстро нарастает фронт импульса (рис. 11.2, в). По мере заряда конденсатора протекающий через него ток уменьшается со скоростью, зависящей от постоянной времени цепи. При малой постоянной времени конденсатор быстро заряжается и ток перестает протекать по цепи. Таким образом, когда конденсатор полностью заряжен, напряже ние на резисторе R1 спадает до нулевого уровня. В момент окончания действия импульса входное напряжение уменьшается до нуля, и конденсатор начинает разряжаться. Ток разряда конденсатора имеет противоположное но сравнению с током заряда направление, следовательно, направление тока через резистор также противоположно току заряда. Поэтому на выходе теперь появится отрицательный всплеск напряжения.

Рис. 11.2. Дифференцирующая цепь (а) и форма импульса на входе (б) и выходе (в) цепи.

На практике на вход дифференцирующей цепи обычно подаются импульсы. Если же на вход дифференцирующей цепи подать синусоидальные колебания, то их форма не изменится, но произойдут сдвиг фазы выходного колебания и уменьшение амплитуды этих колебаний на величины, зависящие от частоты входного сигнала. Другой тип дифференцирующей схемы можно получить, если C1 заменить резистором, а R — индуктивностью. В такой цепи фактором, определяющим качество дифференцирования, является также постоянная времени. Как и в интегрирующей цепи, омическое сопротивление катушки индуктивности ухудшает характеристики схемы. Поэтому такую цепь применяют довольно редко.

11.3. Интегрирующе-дифференцирующая цепь Операции дифференцирования и интегрирования можно производить, используя комбинированную цепь, показанную на рис. 11.3. Здесь напряжение, снимаемое с двух верхних зажимов, является выходным напряжением интегрирующей цепи, а с двух нижних — выходным напряжением дифференцирующей цепи.

Параметры схемы таковы, что при входном сигнале в виде колебаний прямоугольной формы на выходе интегрирующей цепи получается напряжение пилообразной формы. Такую комбинированную цепь часто применяют в радиолокационных и телевизионных системах для целей фильтрации (пропускания полезных импульсных сигналов и ослабления импульсов помех). Эти цепи используют и в других случаях, когда следует пропустить импульсы только определенной длительности и задержать все другие.

Рис. 11.3. Комбинированная интегрирующе-дифференцирующая цепь.

Для анализа работы схемы предположим, что амплитуда входных импульсов равна 100 В. При подаче такого импульса на вход, схемы в начальный момент через конденсатор Ci будет протекать максимальный ток, и, следовательно, на какое-то мгновение конденсатор замкнет навдротко резистор R{. Таким образом, в начальный момент времени напряжение на резисторе R1 отсутствует. Однако по мере заряда конденсатора величина емкостного тока будет уменьшаться, а падение напряжения на резисторе R1 возрастать. Когда конденсатор полностью зарядится (по истечении времени, равного примерно пяти постоянным времени), напряжение импульса будет полностью приложено к цепи последовательно соединенных резисторов. Это напряжение будет делиться пропорционально сопротивлениям, т. е. на R1 величина напряжениия составит 75 В, а на R2 — 25 В. В результате конденсатор C1 окажется заряженным до напряжения, равного падению напряжения на резисторе Ri. В начальный момент выходное напряжение, снимаемое с резистора R2, будет иметь вид остроконечного всплеска, полученного в результате дифференцирования входного импульса.

В момент спада входного импульса напряжение на входе снижается до нуля и начинается разряд конденсатора С1. Разряд конденсатора происходит через оба резистора, как если бы они были присоединены параллельно к конденсатору. Это происходит потому, что резистор R1 присоединен к конденсатору параллельно непосредственным образом, а резистор R2 присоединен к GI также параллельно через входную цепь. Во время разряда конденсатора ток, протекающий через резистор R2, имеет обратное направление, в результате на выходе появляется отрицательный всплеск напряжения. Так как оба резистора фактически соединены параллельно с конденсатором, то постоянная времени т этой цепи выражается формулой (11.6) Как было показано выше, на резисторе Rl появляется напряжение пилообразной формы. Форма сигнала на этом резисторе зависит от постоянной времени и от соотношения длительности импульса и постоянной времени.

11.4. Последовательный диодный ограничитель Во многих промышленных установках, схемах автоматики, системах связи применяются нелинейные устройства, которые позволяют устранить помехи, всплески при переходных процессах и другие нежелательные выбросы сигнала. При помощи таких устройств возможно ограничивать синусоидальные колебания с целью формирования колебаний прямоугольной формы (преобразования их в прямоугольные импульсы). Кроме того, устройства могут использоваться для получения сигналов с постоянной амплитудой и привязки сигналов к определенному уровню постоянного напряжения. Эти устройства, называемые ограничителями, устройствами привязки или фиксации заданного уровня напряжения, имеют специфическое применение.

Рис. 11.4. Схема последовательного диодного ограничителя.

Ограничитель — это устройство, ограничивающее сигнал выше или ниже заданного уровня, называемого уровнем ограничения. Вне области ограничения величина выходного сигнала пропорциональна величине входного сигнала. Ограничители могут быть последовательного и параллельного типа;

их выполняют на диодах, транзисторах или лампах. Типичная схема последовательного диодного ограничителя снизу представлена на рис. 11.4. Так как резистор и диод здесь соединены последовательно, эту схему называют последовательной. В ограничителе используется напряжение смещения, полярность которого указана на рисунке. Поскольку полярность источника смещения является обратной для диода, при отсутствии внешнего сигнала ток в ограничителе не протекает. При подаче же на вход сигнала положительной полярности протекание тока начнется с момента, когда величина входного сигнала превысит напряжение смещения 4,5 В.

После того как величина входного сигнала превысит напряжение смещения, величина выходного сигнала будет пропорциональна величине сигнала на входе. Если на вход подается сигнал отрицательной полярности, то он действует так же, как источник смещения, и диод будет еще дальше переходить в область отсечки.

Следовательно, в данной схеме срезается часть сигнала, находящаяся ниже уровня смещения 4,5 В.

Предположим, что входной сигнал представляет собой колебания прямоугольной формы (рис. 11.4). Так как полный размах сигнала составляет 24 В, амплитуда сигнала во время положительного и отрицательного полупериодов равна 12 В. При положительном полупериоде входной сигнал должен превысить напряжение смещения 4,5 В, и только после этого диод откроется. Следовательно, амплитуда выходного сигнала будет со ставлять только 7,5 В.

11.5. Параллельный диодный ограничитель Различные варианты схем параллельных ограничителей показаны на рис. 11.5 [Для нормальной работы параллельного ограничителя принципиально необходимо включение последовательно с источником сигналов резистора довольно значительного сопротивления. — Прим. ред.]. Схема на рис. 11,5 а иллюстрирует ограни чение сигналов отрицательной полярности. Здесь при подаче на вход биполярных колебаний прямоугольной формы на выходе получают импульсы только положительной полярности. При положительном входном сигнале на диод подается напряжение обратной полярности и диод имеет большое обратное сопротивление, так как находится в закрытом состоянии. Таким образом, во время положительного полупериода входной сигнал будет проходить на выход. Во время действия отрицательного полупериода входных импульсов прямоугольной формы полярность напряжения, приложенного к диоду, будет такой, что последний переходит в открытое состояние. При этом малое сопротивление открытого диода будет шунтировать резистор RI и выходное напряжение будет близко к нулю. В течение последующих полупериодов процесс будет повторяться и на выходе будут появляться импульсы положительной полярности. Для получения импульсов отрицательной полярности следует направление включения диода изменить на обратное.

Рис. 11.5. Схемы параллельного диодного ограничителя.

Схема ограничителя параллельного типа с источником фиксированного положительного смещения изображена на рис. 11,5,6. Полярность источника смещения такова, что он поддерживает диод в закрытом состоянии. Для обеспечения требуемого уровня ограничения устанавливается нужная величина напряжения источника смещения. В схеме рис. 11,5,6 диод открывается только в том случае, когда напряжение поло жительного входного сигнала превысит 3В. Следовательно, если размах колебаний напряжения прямоугольной формы на входе составляет 12В, то выходное напряжение пропорционально входному только в случае, пока последнее не превышает 3В. Если же входной сигнал оказывается выше 3 В, то диод открывается и источник сигналов окажется зашунтированным. При отрицательном сигнале на входе диод закрыт и выходной сигнал пропорционален входному. Таким образом, если полярность напряжения смещения и полярность включения диода противоположны, то сигнал на выходе появится в том случае, когда величина входного сигнала не превышает приложенного напряжения смещения.

Применение смещающего напряжения дает возможность производить ограничение отрицательной или положительной полуволны синусоидальных колебаний. Направление включения диода и полярность смещающего напряжения, показанные на рис. 11.5, в, таковы, что осуществляется ограничение положительной полуволны напряжения: на выходе это напряжение будет иметь плоскую вершину при величинах входного сигнала, которые превосходят уровень смещения. Если напряжение положительной полуволны входного сигнала превысит уровень смещения, то диод открывается и шунтирует сигнал. Пропорциональное же изменение входному сигналу сигнала на выходе будет иметь место, если величина входного сигнала меньше в алгебраическом смысле напряжения смещения.

Для ограничения отрицательной полуволны синусоидальных колебаний необходимо полярность напряжения смещения и полярность включения диода изменить на обратные (рис. 11.5, г). В этом случае напряжение смещения поддерживает диод в закрытом состоянии, кроме интервалов времени, когда входной сигнал, имеющий отрицательную амплитуду, превышает напряжение смещения и открывает диод.

Pages:     | 1 | 2 || 4 | 5 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.