WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 | 2 || 4 |

«Б.С.Лившиц, А.П.Пшеничников, А.Д.Харкевич ТЕОРИЯ ТЕЛЕТРАФИКА 2 Б.СЛившиц, А.П.Пшеничников, А.Д.Харкевич ТЕОРИЯ ТЕЛЕТРАФИКА ИЗДАНИЕ ВТОРОЕ, ПЕРЕРАБОТАННОЕ И ДОПОЛНЕННОЕ Допущено Министерством ...»

-- [ Страница 3 ] --

Выбрать структуру ступенчатой НС (схему ступенчатого включения) – это значит определить взаимные соединения точек коммутации каждой из нагрузочных групп с учетом возможностей различных объединений, перехвата и сдвига. При определении вариантов структуры НС, отличающихся способами объединения точек коммутации без учета перехвата и сдвига, возникает задача отыскания значений структурных параметров g, k1, k2,..., kn для заданных и d.

При составлении схемы ступенчатого включения надо стремиться к тому, чтобы параметр g выбирался из соотношения (8.3) с учетом того, что g – целое, положительное число. При этом принимаются во внимание удобства конструктивного разделения источников нагрузки на группы и преимущества таких значений g, которые дают больше различных комбинаций запараллеливания выходов.

В случае двухгруппового включения (g=2) существует один набор значений структурных параметров k1 и k2, для которых справедливы соотношения Для числа групп g>2 число вариантов структуры может быть большим. Пусть, например, требуется выбрать структуру ступенчатой НС, имеющей =27 выходов для включения соединительных устройств при доступности d=10. В этом случае число групп g должно лежать в пределах В указанном диапазоне возможны значения g=6, 7, 8, 9, 10. Учитывая, что при построении схемы без сдвига значения 6, 8 и 10 дадут больше возможностей запараллеливания выходов, чем значения 7 и 9, принимая во внимание, что при g=6 будет минимальный расход кабеля, а также считая, что в нашем примере число источников нагрузки таково, что оно удобно делится на шесть групп, выберем g=6 (шестигрупповое включение).

Таким образом, запараллеливанием 60 точек коммутации необходимо получить выходов. В этом случае возможно образовать индивидуальные, парные, объединенные по три и объединенные по шесть точек выходы. Тогда общее число выходов будет а доступность Учитывая, что k1, k2, k3 и k6 – целые и положительные числа, каждое из которых не превышает 10, число вариантов структуры пучка будет конечным.

Вычитая равенство (8.7) из равенства (8.6), получим –d=5k1+2k2+k3=17. Из этого соотношения следует, что k13, т. е. для k1 нужно рассматривать только значения 0, 1, 2, 3.

При k1 = 3 будет справедливо соотношение 2k2+k3=2. Поэтому для k2 возможны значения 0 и 1. Если k2=1, то k3=0, а k6=6.

Таким образом, один из вариантов схемы, удовлетворяющий условиям (8.6) и (8.7), будет иметь следующие структурные параметры: k1=3;

k2=1;

k3=0;

k6=6. Действуя указанным образом, можно получить еще одиннадцать вариантов, возможных при заданных условиях.

Структурные параметры всех вариантов приведены в табл. 8.1. На рис. 8.2 показаны схемы вариантов структуры неполнодоступного пучка, представленных в табл. 8.1.

Таблица 8.1.

Величина параметра для номера варианта Структурные параметры 1 2 3 4 5 6 7 8 9 10 11 k1 3 3 2 2 2 2 1 1 1 1 0 k2 1 0 3 2 1 0 6 5 4 3 8 k3 0 2 1 3 5 7 0 2 4 6 1 k6 6 5 4 3 2 1 3 2 1 0 1 Наилучшим вариантом ступенчатого включения при заданном качестве обслуживания и прочих равных условиях будет тот, который дает наибольшую пропускную способность или при котором вероятность потерь при заданной величине нагрузки будет наименьшей. При отыскании наилучшего варианта неполнодоступной схемы вообще и ступенчатого включения в частности следует иметь в виду, что не существует схемы с лучшей пропускной способностью при любых значениях нагрузки. При заданных параметрах g, d и неполнодоступной схемы в одной области нагрузки может оказаться предпочтительнее (обеспечивающей меньшие потери) одна структура НС, а в другой области нагрузки – другая.

М. А. Шнепс показал, что для схем с упорядоченным исканием свободной линии при малых нагрузках выгоднее использовать ступенчатые схемы с индивидуальными выходами, а при больших нагрузках – равномерные схемы. Для повышения пропускной способности НС существенное значение имеют перехваченные включения, которые во многих случаях позволяют снизить потери. При этом перехваченные включения без сдвига имеют несколько большую пропускную способность, чем перехваченные включения со сдвигом. Однако при доступностях d10 отрицательное влияние сдвига уже почти не сказывается.

В неполнодоступных схемах со случайным исканием наличие или отсутствие сдвига не влияет на пропускную способность НС. В настоящее время точное решение задачи определения пропускной способности возможно для схем с небольшим числом выходов и связано с большим объемом вычислений, а приближенное решение задачи может быть осуществлено путем моделирования на универсальных ЭВМ или специализированных машинах телефонной нагрузки.

Использование методов статистического моделирования позволило установить существенную зависимость эффективности НС от распределения числа выходов (линий) по шагам искания. Поэтому при практическом построении ступенчатых НС в области потерь до 1% ЛОНИИС рекомендует распределять число линий по шагам искания в соответствии с оптимизирующими коэффициентами j, вычисленными А. М. Оганесяном. В этом случае число выходов j на j-м шаге искания определяется из соотношения где – суммарное число выходов в неполнодоступной схеме.

Для ступенчатой НС на =27 выходов с доступностью d=10 распределение выходов по шагам искания приведено в табл. 8.2.

ТАБЛИЦА 8. Су Шаг исканий j 1 2 3 4 5 6 7 8 9 мма Значение 0,19 0,13 0,12 0,11 0,1 0,09 0,08 0,07 0,06 0,05 коэффициента j Число выходов j 5,13 3,51 3,24 2,97 2,7 2,43 2,16 1,89 1,62 1,35 Округленное число выходов на каждом 6 3 3 3 3 2 2 2 2 1 шаге Округленное число выходов с учетом 6 3 6 6 6 6 6 6 6 6 использования цилиндров Указанное в третьей строке таблицы число выходов на каждом шаге искания получается дробным, и его округляют с учетом числа групп g ступенчатой НС и способом объединения точек коммутации. Будем считать, что в нашем случае число групп g = 6, a сдвинутые соединения не применяются. Тогда для каждого шага искания с учетом симметрии схемы мы должны округлить значение числа выходов до чисел 6, 3, 2 или 1. Один из вариантов округления приведен в предпоследней строке табл. 8.2. Полученная с учетом оптимизирующих коэффициентов ступенчатая НС соответствует варианту 9 из табл. 8.1 и рис. 8.2.

При желании использовать сдвинутые соединения округления числа выходов можно производить с учетом образования цилиндров на двух или нескольких соседних шагах искания. При этом от каждого полного цилиндра получаем шесть выходов. В последней строке табл. 8.2 показан один из вариантов такого округления. В этом случае на шагах искания 3 и 4 образуется двухшаговый цилиндр, на шагах 5, 6, 7 и 8, 9, 10 строятся трехшаговые цилиндры.

Пропускная способность ступенчатой НС, полученная с помощью оптимизирующих коэффициентов, зависит, естественно, как от правильности используемых коэффициентов, так и от способа округления числа выходов.

8.4. Выбор структуры равномерной неполнодоступной схемы Выбор оптимальной структуры равномерной неполнодоступной схемы производится исходя из следующих принципов:

1) каждая линия должна быть доступна одинаковому числу нагрузочных групп (при целом ) или числу групп, отличающихся не более чем на единицу (при дробном );

2) каждая нагрузочная группа должна иметь одинаковое число общих линий со всякой другой группой (элементы матрицы связности должны быть одинаковы или отличаться не более чем на единицу);

3) каждая линия объединяет точки коммутации, принадлежащие к соседним шагам искания.

При заданных и d не всегда есть возможность строго выдержать указанные принципы построения оптимальной равномерной схемы. В этом случае следует стремиться к максимально возможному их выполнению. В случае равномерной схемы, как и при ступенчатом включении, число групп g выбирается с учетом соотношения (8.3). После предварительного запараллеливания получаем gd точек коммутации.

На основании первого принципа точки коммутации должны запараллеливаться по r и r+ точек, принадлежащих разным группам, где r=[(gd)/]=[], а квадратная скобка – знак целой части.

Число линий, полученных путем запараллеливания по r+1 точек, и число 2 линий, получающихся запараллеливанием по r точек, определяются соотношениями Наиболее удобно определить значения и 2, если коэффициент уплотнения представить в виде целой и дробной частей, в которых не производятся сокращения:

Тогда числитель дробной части будет равен числу, т. е. числу линий, обслуживающих по r+1 нагрузочных групп, а число линий 2, обслуживающих по r нагрузочных групп, будет равно 2=–1. Например, для схемы рис. 8.1в коэффициент уплотнения может быть представлен в следующем виде: =gd/=410/16=2+8/16. Следовательно, =8, а 2=16–8=8.

Если коэффициент уплотнения равен целому числу, то равномерная схема может иметь запараллеливание только по r точек.

Выполнение второго и третьего принципов осуществляется путем составления всех схем из отдельных подсхем, которые иногда называют цилиндрами. Каждая такая подсхема (цилиндр) охватывает r или r+1 соседних шагов искания и образует число линий, равное числу групп g. Например, схема, приведенная на рис. 8.1в, имеет r=2 и построена из цилиндров двух типов: цилиндров, охватывающих по два соседних шага искания, и цилиндт ров, занимающих по три соседних шага искания. В этом примере вся схема состоит из четырех цилиндров (однотипно построенных подсхем). Если вся схема состоит только из цилиндров, то такую схему называют правильной. Для того чтобы при заданных значениях, d и g схема была правильной, необходимо, чтобы величины были целыми числами. Здесь lr – число r-шаговых цилиндров;

lr+1 – число (r+ 1)-шаговых цилиндров.

Параметры и d для правильной схемы будут выражаться следующим образом:

Если соотношение (8.10) не выполняется и схема не может быть правильной, то поступают следующим образом:

1) при заданных параметрах g и d строится правильная схема с числом линий ', удовлетворяющим условию (8.10) и близким к заданному числу линий. Затем в полученной таким образом правильной схеме изменяется число линий так, чтобы довести его да требуемого значения, соблюдая при этом указанные выше принципы;

2) при заданных g и d строятся максимально возможное число r-шаговых цилиндров, которое будет равно целой части отношения 2/g, и максимальное число (r+1)-шаговых цилиндров, которое будет равно [/g]. После этого остается некоторое число шагов искания, которые запараллеливают с наименьшим нарушением указанных выше принципов.

8.5. Построение цилиндров Цилиндр является элементарной равномерной НС, построенной на k шагах искания, с одинаковым сдвигом между соседними шагами искания. Каждый цилиндр образует g выходов, а коэффициент уплотнения цилиндра равен числу шагов искания (=k).

На рис. 8.3а, б, в показаны двухшаговые цилиндры (цилиндры, построенные на двух шагах искания). Все три цилиндра имеют одинаковое число нагрузочных групп g, одинаковое число выходов, равное числу групп, одинаковый коэффициент уплотнения =2 и отличаются между собой сдвигом или, как его называют, наклоном. Наклон цилиндра, приведенного на рис.

8.3а, равен единице (i=1), а на рис. 8.3б – двум (i=2). При выборе типа цилиндров при построении равномерных НС этот параметр имеет существенное значение. Его значения показаны на рис. 8.3 в квадратных скобках справа от соответствующего цилиндра. На рис.

8.3г, д, е приведены три трехшаговых цилиндра. Все цилиндры имеют g выходов с коэффициентом уплотнения =3. Отличаются между собой наклоном, который для трехшаговых цилиндров определяется двумя цифрами. Первая цифра указывает наклон (сдвиг) между первым и вторым шагами искания, а вторая цифра – между вторым и третьим шагами искания.

Аналогичным образом строятся четырехшаговый цилиндр параметры которого характеризуются тремя цифрами, и цилиндры с большим числом шагов искания.

Учитывая, что коэффициент уплотнения НС должен лежать в пределах 2–4, наиболее часто употребляемые цилиндры являются двух-, трех- или четырехшаговыми. Для однотипности рассмотрения одношаговым цилиндром называют цилиндр без сдвига, параметр которого равен нулю.

Такие одношаговые цилиндры наряду с другими структурами специального вида (особые цилиндры, цикло-схемы) используются в том случае, когда рассматриваемая НС при заданных структурных параметрах не может быть правильной.

Общее число цилиндров, требуемых для построения практически используемых НС, невелико. Для удобства они сведены в таблицы [10], которые позволяют ускорить выбор структуры НС. В таблицах помимо параметров цилиндров указывается первая строка матрицы связности, что облегчает выбор необходимых цилиндров и подсчет матрицы связности всей НС, которая позволяет судить об оптимальности выбранной схемы.

8.6. Идеально симметричная неполнодоступная схема Идеально симметричной неполнодоступной схемой называют схему, которая при числе выходов, доступности d и случайном равновероятном искании свободного выхода имеет число групп g, равное где Cd – число сочетаний из по d. Таким образом, в идеально симметричной НС имеется такое количество нагрузочных групп, которое равно числу способов выбора d различных линий из общего числа линий. В коммутационные точки каждой нагрузочной группы включается d различных линий. Любые две нагрузочные группы отличаются друг от друга, по крайней мере, одной линией.

Вообще, нагрузочной группе любого неполнодоступного включения, а не только идеально симметричного, предоставляется доступ к одному из сочетаний, состоящему из d различных линий, выбранных среди всех v линий НС (см. рис. 8.1). Однако в обычной неполнодоступной схеме из-за малого числа групп используются далеко не все сочетания по d линий. Например, в схемах, приведенных на рис. 8.1, из большого числа возможных сочетаний, равного С1016, используется только по четыре сочетания.

Идеально симметричная НС отличается от обычной тем, что для каждого из возможных сочетаний по d линий предусматривается отдельная нагрузочная группа. На рис. 8.4а, б, в в качестве примера приведены три идеально симметричных НС. На рис. 8.4а изображена схема с доступностью d=2 и числом выходов =3, при этом число нагрузочных групп равно g=Cd=C23=3.

Схема, приведенная на рис. 8.4б, имеет четыре выхода при d=3 и g=4. На рис 8.4в приведена схема с параметрами =4, d=2 и g=6.

Каждая нагрузочная группа идеально симметричной НС пользуется своим набором выходов, отличающимся от другх наборов, по крайней мере, одним выходом. С этой точки зрения неполнодоступная схема, приведенная на рис. 8.4г и имеющая g=Cd=С24=6 нагрузочных групп, не является идеально симметричной, так как нагрузочные группы 4 и 5 имеют доступ к одному и тому же набору выходов 3 и 4.

Следует отметить, что в силу свойств идеально симметричной схемы при одинаковой нагрузке каждой нагрузочной группы и равновероятном случайном выборе свободного выхода использование каждого выхода (нагрузка, обслуженная каждым выходом) будет одинаковым.

Поэтому вероятность потерь для каждой нагрузочной группы будет одна и та же. При применении коммутационных устройств, обеспечивающих упорядоченное искание, использование выходов идеально симметричной схемы может быть одинаковым лишь в том случае, если для каждого набора d выходов из v будет такое число групп, которое обеспечит любые d! перестановок этих выходов. Это позволит получить одинаковую нагрузку на каждый из выходов идеально симметричной НС.

При упорядоченном искании число нагрузочных групп будет равно Идеально симметричная неполнодоступная схема, как видно из (8.12) и (8.13), имеет большое число нагрузочных групп. Например, уже при емкости пучка =10 линий с доступностью d=4 для равновероятного искания число нагрузочных групп в соответствии с (8.12) будет равно g=Сd=С410=210. При упорядоченном искании число групп резко увеличивается и по (8.13) в рассматриваемом примере составит g=d!Cd = 4!C410=5040.

Если учесть, что практически используемые схемы имеют значительно большие и d, то становится очевидной невозможность практического применения идеально симметричных НС. Как было указано ранее, эти схемы применяются лишь для оценки пропускной способности реальных НС.

Коэффициент уплотнения идеально симметричной схемы равен для случая равновероятного искания и для упорядоченного искания.

Из неполнодоступных схем идеально симметричного типа можно строить частично идеально симметричные НС. На рис. 8.5 приведена такая схема, которая построена с применением схем рис. 8.4 а, б. Она обладает некоторыми свойствами симметрии, позволяющими облегчить определение вероятности потерь. Число нагрузочных групп у частично идеально симметричной схемы меньше, чем у идеально симметричной при том же числе выходов и той же доступности.

8.7. Формула Эрланга для идеально симметричной неполнодоступной схемы Рассмотрим следующую модель:

в выходы одвозвеньевой идеально симметричной неполнодоступной схемы с доступностью d включено линий;

на входы схемы поступает простейший поток вызовов с параметром ;

длительность обслуживания является случайной величиной, распределенной по показательному закону F(t)=1–е–t;

если вызов поступает от источника нагрузочной группы, в которой нет доступа к свободной линии (все d линий заняты), то вызов теряется. Требуется определить вероятность потерь.

Как было указано в гл. 4, для любого однородного транзитивного марковского процесса с конечным числом состояний переходныe вероятности pji(t) того, что система, находившаяся в состоянии j, за время t перейдет в состояние i, имеют предел, не зависящий от начального состояния j. Если V(t) –число занятых линий в неполнодоступном пучке в момент времени t, то V(t) является случайным процессом с конечным числом состояний, поскольку число линий в НС конечно.

Процесс V(t) является марковским, так как будущее течение его не зависит от прошлого, если известно настоящее, т. е. известно V(t0). Кроме того, этот процесс является однородным, поскольку переходные вероятности рji(t) зависят лишь от длины интервала t=t2–t1 и не зависят от расположения интервала на оси времени (т. е. от t2 и t1). И, наконец, V(t) является транзитивным марковским процессом. Это следует из того, что возможен переход из любого состояния j в любое состояние i пучка. Иначе говоря, переходная вероятность pji(t) отлична от нуля. Последнее можно подтвердить следующими соображениями. Если разбить интервал t на две части, то вероятность перехода из состояния j в нулевое состояние за первую часть интервала при условии, что не поступит ни одного вызова и освободятся все j занятых линий пучка, будет отлична от нуля. Точно так же вероятность перехода системы из нулевого состояния в состояние i (если произойдет i занятий и ни одного освобождения) за вторую часть интервала будет также отлична от нуля. Переходная вероятность Pji(t) не меньше произведения вероятностей переходов из состояния j в нулевое состояние и из нулевого состояния в состояние i и поэтому отлична от нуля.

В общем случае неполнодоступная схема, в выходы которой включено линий, имеет микросостояний. Для идеально симметричной схемы достаточно рассмотреть только + макросостояний аналогично тому, как это имеет место для полнодоступного пучка.

Запишем параметры потоков рождения и гибели (занятий и освобождений линий) для рассматриваемого процесса (рис. 8.6). Так как на входы схемы поступает простейший поток вызовов, то при i0. Тогда вероятность того, что в состоянии i поступивший вызов займет свободную линию, будет равна 1–i.

Следовательно, для id i,=(1–i). Таким образом, Параметр потока освобождений По аналогии с (4.12) при конечном числе состояний стационарные вероятности состояний определяются следующими выражениями:

Подставляя (8.16) и (8.17) в (8.18) и учитывая, что для i<.d i=0, получим Для получения выражения для вероятности потерь воспользу- емся формулой полной вероятности:

p = pi.

i i= Так как при i

В общем случае для произвольной НС условные вероятности i зависят не только от числа i занятых выходов, но и от интенсивности поступающей нагрузки, структуры НС и алгоритма установления соединения. Для практически используемых НС определение условных вероятностей i представляет собой сложную комбинаторную задачу. Определение всех i в данном случае практически невозможно из-за большого числа состояний системы.

Особое место среди НС занимают идеально симметричные неполнодоступные схемы, так как в этих схемах число нагрузочных групп g=Cd и занятие d фиксированных линий блокирует одну определенную нагрузочную группу (Cdd=l).

Определим для идеально симметричной схемы число нагрузочных групп, блокируемых в состоянии i занятых выходов, если id. Очевидно, что число заблокированных групп равно числу способов выбора d выходов из i занятых выходов, т. е. Cdi. Следовательно, условная вероятность того, что при i занятых выходах идеально симметричной НС поступающий вызов попадает в заблокированную группу, равна отношению числа заблокированных групп к общему числу групп. Поэтому условная вероятность блокировки i будет равна Соотношение (8.22) справедливо, если возможные размещения свободных и занятых линий равновероятны, что имеет место в силу симметрии идеальной НС. Подставляя выражение для i в формулу для потерь (8.21), получим Эта формула называется формулой Эрланга для идеально симметричной неполнодоступной схемы. Иногда ее называют третьей формулой Эрланга и обозначают B,d(у). Формула (8.23) табулирована [30].

8.8. Априорные методы определения потерь в неполнодоступных схемах Постановка задачи. При проектировании объема коммутационного оборудования исходными данными являются интенсивность телефонной нагрузки, подлежащей обслуживанию, и допустимая величина потерь, определяющая качество обслуживания. По этим данным требуется определить число соединительных устройств, которые могут обслужить заданную нагрузку с требуемым качеством, и построить схему соединения, т. е.

найти значения структурных параметров схемы. Выбранная структура схемы должна обеспечивать обслуживание нагрузки с заданным качеством при минимальном числе соединительных устройств.

Обе задачи, возникающие при проектировании коммутационного оборудования, – выбор схемы включения и определение числа соединительных устройств – взаимно связаны между собой и являются частями одной общей задачи определения минимального объема оборудования. Сложность решения этой общей задачи заставляет делить ее на две отдельные, из которых первая рассмотрена в парагр. 8.3 и 8.4. Решение второй задачи обычно ищут в виде р=f(у,, d, g, СП), т. е. стремятся определить вероятность потерь р как функцию интенсивности нагрузки у, числа приборов, доступности d, числа нагрузочных групп g и других структурных параметров (СП).

Для облегчения задачи считают структурные параметры схемы заданными. В этом случае отыскивается соотношение типа Точное решение данной задачи имеется лишь для идеально симметричных НС и малых неполнодоступных схем, когда возможно решение системы уравнений для вероятностей состояний. Можно получить также приближенную оценку вероятности с требуемой степенью точности, если воспользоваться методом статистического моделирования на ЭВМ или моделированием на специализированных машинах телефонной нагрузки. Для инженерной практики проектирования перечисленные способы подсчета потерь в большинстве случаев неудобны.

Для подсчета потерь в неполнодоступном пучке имеются достаточно простые приближенные способы, которые отражают лишь основные закономерности функции (8.24), учитывая структуру с помощью только одного параметра d. Данные методы основаны на априорных предположениях о распределении вероятностей занятия линий в неполнодоступном пучке, поэтому назовем их априорными. Основным недостатком таких методов является тот факт, что оценить погрешность результатов, полученных с их помощью, можно только экспериментальной проверкой или применением точных методов расчета.

Рассмотрим несколько приближенных априорных методов определения вероятности потерь в неполнодоступном пучке.

Упрощенный метод Эрланга. Если у–интенсивность нагрузки, поступающей на неполнодоступный пучок соединительных устройств, – число соединительных устройств, обслуживающих эту нагрузку, d – доступность и р – вероятность потерь, то при малой вероятности потерь средняя величина интенсивности нагрузки, обслуженной одним соединительным устройством, будет примерно равна у/.

Вероятность Н1 занятости определенного (точно указанного) соединительного устройства можно принять равной средней величине интенсивности нагрузки, обслуженной этим устройством, т. е. H1=y/. Если события занятости приборов в неполнодоступном пучке считать независимыми, то вероятность занятости d определенных устройств будет равна Hd=Hd1=(y/)d. Эта вероятность принимается за вероятность потерь, т. е.

Соотношение (8.25) является весьма простой зависимостью типа (8.24). Из него в явном виде можно получить выражения для у и :

Приведенные рассуждения равносильны априорному утверждению справедливости распределения Бернулли для описания процесса занятия соединительных устройств в неполнодоступном пучке. Формулы (8.25) и (8.26) могут дать лишь грубое приближение для искомых величин и представляют интерес только в случае качественной оценки основных зависимостей между р,, у и d.

Метод Лотце – Бабицкого. Предположим, что процесс занятия соединительных устройств в неполнодоступном пучке можно описать с помощью распределения Эрланга, полученного им для вероятности занятия любых i линий в полнодоступном пучке. Для полнодоступного пучка, состоящего из линий, при интенсивности поступающей нагрузки у оно имеет вид В этом случае вероятность занятия i фиксированных соединительных устройств в полнодоступном пучке при тех же значениях числа приборов и нагрузки будет равна Тогда, считая, что вероятность потерь в неполнодоступном пучке равна вероятности занятия d определенных устройств, получим для нее следующее соотношение:

Формула (8.28) была предложена К. Пальмом в 1943 г. и использовалась К. Якобеусом в 1947 г. для определения потерь в двухзвеньевых схемах. И. А. Бабицкий в 1956 г.

использовал эту формулу для определения потерь в ступенчатых НС и привел таблицы для некоторых значений параметров ступенчатых схем.

Результаты вычислений потерь, полученные по формуле Пальма– Якобеуса [см. (8.28)], хорошо согласуются с результатами статистического моделирования при малых значениях потерь. Для более точного соответствия значений потерь, вычисленных по данной формуле в широком диапазоне, в том числе и при больших потерях, А. Лотце предложил модификацию указанной формулы. В модифицированной формуле Пальма – Якобеуса (сокращенно формуле МПЯ) взамен реально поступающей на неполнодоступ-ную схему нагрузки у используется некоторая фиктивная поступающая нагрузка уф, которая обеспечивает имеющую место в НС обслуженную нагрузку у0 при потерях, характерных для полнодоступного пучка.

Формула МПЯ, таким образом, имеет вид Для заданных и у0 фиктивная нагрузка уф определяется следующим соотношением:

Реально поступающая на НС нагрузка у может быть получена из соотношения Таким образом, реально поступающая нагрузка у обеспечивает обслуженную нагрузку у0 в неполнодоступной схеме, состоящей из линий при доступности d, а фиктивная поступающая нагрузка уф создает ту же обслуженную нагрузку у0 в полнодоступном пучке из линий (d=).

Формула МПЯ совместно с соотношениями (8.30) и (8.31) обеспечивает достаточную точность при определении потерь в НС в широком диапазоне потерь. Это подтверждено многочисленными результатами статистического моделирования в работах А. Лотце и его сотрудников. Ими получены таблицы значений потерь по формуле МПЯ для диапазона значений доступности d=260, числа приборов =1200 и потерь р=0,0010,5.

Метод О'Делла. По этому методу нагрузка у0, обслуженная неполнодоступным пучком из соединительных устройств при вероятности потерь р, определяется как сумма нагрузок, обслуженных полнодоступным пучком, состоящим из d устройств, и неполнодоступным пучком, содержащим –d соединительных устройств.

Считается, что каждая линия полнодоступного пучка обслужит нагрузку где уd – нагрузка, обслуженная всеми d линиями полнодоступного пучка при заданных потерях р.

Относительно второго (неполнодоступного) пучка предполагается, что каждая из –d его линий пропустит нагрузку, лежащую между ymin в соответствии с соотношением (8.32) и утах, определяемой (8.25), т. е.

Отметим, что средняя пропускная способность каждой линии, определяемая (8.33), является предельной величиной удельной пропускной способности в идеально симметричной НС при неограниченно большом числе линий (). В соответствии со сказанным Коэффициент Kl в (8.34) определяет величину надбавки пропускной способности линий второго (неполнодоступного) пучка по сравнению с первым (полнодоступным).

Измерения, проведенные Британским почтовым ведомством, показали, что для ступенчатых НС в случае, когда поступающая нагрузка образуется простейшим потоком, для которого отношение дисперсии к среднему значению равно единице (2/y)=1), следует принимать значение K=0,53. При поступлении выровненной нагрузки, т. е. нагрузки, образуемой потоками вызовов, для которых (2/y)<1, можно полагать К=1.

В этом случае Из соотношения (8.35) можно получить выражения для и р в следующем виде:

Формулами (8.35) – (8.37) рекомендуется пользоваться для расчета числа соединительных устройств на всех ступенях искания, кроме IГИ. Рекомендация мотивируется тем, что в этих случаях приборы обслуживают поток вызовов, преобразованный (выровненный) на предыдущих ступенях искания, для которого справедливы полученные формулы. Для IГИ, обслуживающих непреобразованный поток вызовов (простейший поток), предлагается использование формул, получающихся из соотношения (8.34) при K=0,53.

8.9. Инженерный расчет неполнодоступных схем С целью упрощения расчетов обычно стремятся свести их процедуру к использованию таблиц, кривых или простейших формул. Формулы (8.25) и (8.26) являются весьма грубым описанием существа дела и для инженерных расчетов обычно не используются. Результаты вычислений по (8.29) – (8.31) приведены в литературе в виде таблиц и используются для расчетов равномерных НС.

При фиксированных значениях d и р ф-ла (8.36) и аналогичная формула при K=0, приобретает вид линейной зависимости числа соединительных устройств от интенсивности нагрузки:

где и – постоянные коэффициенты при заданных d и р и зависят от этих параметров. Таблица для и приведена в [12].

Формула типа (8.38) удобна при проведении инженерных расчетов, так как с помощью небольшой таблицы коэффициентов и можно охватить широкую область изменения величин d и р, необходимую при проведении расчетов.

Графики зависимости числа приборов в неполнодоступном пучке от нагрузки =fd(у) при постоянных потерях р = 0,005 для трех значений доступности d приведены на рис. 8.7. Зависимость имеет такой вид, что, начиная с некоторого значения у, она может быть аппроксимирована прямой линией, как это делается в (8.38). Из рис. 8.7 видно, что с увеличением доступности уменьшается число приборов, требуемых для обслуживания заданной нагрузки. Наименьшее число приборов необходимо при полнодоступном включении (нижняя кривая).

На рис. 8.8 показана зависимость числа приборов в неполнодоступном пучке от нагрузки =fp(y) при постоянной доступности d=10 для трех значений потерь р. Из рассмотрения этого семейства кривых можно сделать вывод, что с повышением качества обслуживания (уменьшением величины потерь) требуется больше приборов для обслуживания заданной нагрузки.

Характер изменения среднего использования соединительных устройств в неполнодоступном пучке при р=0,001 в зависимости от емкости пучка показан на рис. 8.9 для трех значений доступности в сравнении со средним использованием в полнодоступном пучке (верхняя кривая). Кривые показывают, что среднее использование соединительных устройств растет с ростом емкости пучка и увеличением доступности d.

Задача.

Рассчитать: число линий в неполнодоступном пучке с доступностью d=10, необходимых для обслуживания интенсивности поступающей на ступень IIГИ нагрузки (y=10 Эрл при величине потерь р= 0,005. Расчет производить упрощенным методом Эрланга, методом Лотце–Бабицкого по формуле Пальма–Яко-беуса, методом О'Делла.

Решение 1. Упрощенный метод Эрланга:

2. Метод Лотце–Бабицкого, формула Пальма–Якобеуса:

Из этой формулы число линий в явном виде не выражается, а определяется методом последовательных приближений. Пусть =17, тогда Так как потери превышают допустимую норму, то число линий необходимо увеличить. При =20 p=0,0087;

при =21 р=0,00540,005. Таким образом, =21.

3. Метод О'Делла:

Нагрузка, обслуженная всеми линиями неполнодоступного пучка, уo=у(1–р)=10(1-0,005)=9,95 Эрл.

Нагрузка, поступающая на d линий полнодоступного пучка при заданной норме потерь р=0,005, определяется по таблицам первой формулы Эрланга: y=d=3,96 Эрл. Нагрузка, обслуженная d линиями полнодоступного пучка при р=0,005, Из сравнения результатов расчета числа линий тремя методами следует, что приближенный метод Эрланга значительно занижает число линий по сравнению с методом Лотце–Бабицкого и методом О'Делла.

Контрольные вопросы 1. Укажите основные особенности ступенчатой и равномерной неполнодоступных схем и их отличие.

2. Какими параметрами характеризуется структура ступенчатой НС?

3. Какими параметрами характеризуется структура равномерной НС?

4. Составьте матрицы связности для четвертого, шестого и девятого вариантов структуры шестигрупповой НС, приведенной на рис. 8.2, и сравните их.

5. Определите структурные параметры двухгрупповой (g=2) ступенчатой НС на 14 выходов (=14) при доступности d=10.

6. Определите число возможных вариантов структуры неполнодоступной НС при d=10, =30, g=6.

7. Определите структурные параметры четырехгрупповой равномерной НС при d= 10 и =16.

8. Определите число нагрузочных групп идеально симметричной НС для случайного равновероятного искания при =16 и d=10.

9. Определите вероятность потерь в идеально симметричной НС с параметрами =3, d=2 при интенсивности поступающей нагрузки у=1 Эрл.

10. Укажите, как зависит число выходов НС от доступности при заданных нагрузке и вероятности потерь.

11. Укажите, как зависит число выходов НС от качества обслуживания (вероятности потерь) при заданных нагрузке и доступности.

12. Изобразите характер зависимости среднего использования выхода НС от общего числа выходов при заданных доступности я вероятности потерь.

Г Л А В А Д Е В Я Т А Я Звеньевые коммутационные системы 9.1. Общие сведения Особенности звеньевых коммутационных схем заключаются в том, что в соединении между одним из входов и одним из выходов схемы кроме точек коммутации участвуют также промежуточные линии (ПЛ).

Рассмотрим двухзвеньевую схему, приведенную на рис. 9.1, у которой любой выход схемы доступен любому входу (полнодоступный пучок выходов). Схема изображена в общем виде и имеет k коммутаторов в первом звене на п входов и т выходов каждый и т коммутаторов во втором звене на k входов и l выходов каждый. Выходы схемы разбиты на группы (направления). На рисунке показано два направления – направление Hi, к которому отнесены по два выхода в каждом коммутаторе второго звена и имеющее таким образом 2т выходов, и направление Hj, имеющее т выходов (по одному выходу в каждом коммутаторе второго звена). В общем случае число выходов в каждом коммутаторе, отводимых для одного направления, может быть равно q, и тогда суммарное число выходов в направлении составит тq.

В простейших однозвеньевых коммутационных схемах с полнодоступным включением выходов, которые называют коммутаторами, обслуживание поступающего на вход вызова заключается вподключении к этому входу свободного выхода в одной точке коммутации (одно звено соединения). В более сложных неполнодоступных схемах (см. рис. 8.1) при установлении соединения устанавливается путь, содержащий также только одно звено.

В двухзвеньевой коммутационной схеме для установления соединения входа с выходом требуются две точки коммутации и одна из промежуточных линий, и, таким образом, соединительный путь содержит два звена соединения – ПЛ и выход.

Коммутационные схемы, содержащие два и более звеньев в соединительном пути, называют звеньевыми. В общем случае звеньевая схема – это схема, имеющая входы, выходы, коммутаторы и промежуточные линии. Все эти элементы взаимно связаны между собой и образуют некоторую структуру, которая позволяет соединить вход с выходом, используя определенные промежуточные линии и точки коммутации, т. е. устанавливая соединительный путь между входом и выходом. Каждый соединительный путь в схеме можно задать упорядоченным набором промежуточных линий. При этом любые две соседние промежуточные линии соединительного пути могут быть соединены между собой в точке коммутации. Если все промежуточные линии и выход, составляющие соединительный путь, свободны, то и этот путь свободен. Соединительный путь считается занятым, если хотя бы одна из промежуточных линий или выход заняты.

Любая звеньевая схема имеет конечное число состояний, каждое из которых отличается комбинацией занятых входов, выходов и промежуточных линий.

По сравнению с однозвеньевыми полнодоступными схемами, рассмотренными в гл. 4–6, и однозвеньевыми неполнодоступными схемами, рассмотренными в гл. 8, звеньевые схемы имеют большее число состояний. Поэтому для звеньевых схем, представляющих практический интерес, система уравнений для вероятностей состояний во многих случаях не может быть решена, а в отдельных случаях не может быть даже выписана.

Исследование звеньевых схем сложно не только из-за их большого числа состояний.

Дополнительные усложнения возникают также и из-за того, что между процессами, происходящими в разных направлениях выходов звеньевой схемы, существует взаимная зависимость. Это можно уяснить, рассматривая схему на рис. 9.1. Для установления соединения к выходам направлений Hi и Hj используются одни и те же промежуточные линии. Поэтому занятие промежуточных линий для подключения к выходам одного направления изменяет вероятность занятия выходов другого направления.

Если для звеньевой схемы предположить, что существуют условные вероятности блокировки i, которые зависят лишь от числа занятых выходов, то для простейшего потока вызовов и показательного распределения длительности занятия можно записать уравнения для вероятностей состояний и воспользоваться методом условных вероятностей, разработанным Г. П. Башариным. Однако в общем случае условные вероятности блокировки зависят не только от числа занятых выходов, но и от структуры схемы, поступающей нагрузки и алгоритма установления соединения, что усложняет задачи исследования звеньевой схемы. В связи с этим инженерный расчет звеньевых схем основывается на априорных предположениях относительно способа математического описания результатов воздействия поступающего потока вызовов на отдельные звенья соединения. Обычно предполагается, что процессы, протекающие в различных звеньях схемы, независимы и могут быть описаны каким-нибудь простым законом распределения;

кроме того, используются и другие упрощающие предположения. Это облегчает решение задачи, однако вносит отклонение от истинных характеристик, имеющих место в процессе функционирования схемы.

В большинстве случаев нельзя заранее указать, в какой степени то или иное упрощающее предположение искажает истинную величину отыскиваемого показателя (например, вероятности потерь), поэтому для определения степени погрешности приближенных методов можно воспользоваться сравнением с результатами моделирования на ЭВМ. Поскольку наиболее простыми звеньевыми схемами являются схемы с двумя звеньями соединения, то в первую очередь изучим методы расчета потерь в таких схемах.

Из самых распространенных в настоящее время приближенных инженерных методов расчета двухзвеньевых схем рассмотрим два метода: комбинаторный метод Якобеуса и метод эффективной доступности. Сейчас существует тенденция разработки методов расчета числа соединительных устройств с использованием результатов статистического моделирования на ЭВМ. Полученные результаты, как правило, аппроксимируются какими-нибудь простыми функциональными зависимостями. Так как практически невозможно получить числовые данные для любых значений нагрузки и параметров структуры, которые могут встретиться при расчетах, то такого типа методы предполагают интерполяцию и экстраполяцию в области, где числовые данные не получены.

9.2. Комбинаторный метод. Полнодоступное включение выходов Рассмотрим на примере односвязной двухзвеньевой схемы, приведенной на рис. 9.1, комбинаторный метод расчета, разработанный шведским ученым Якобеусом.

Число выходов из каждого коммутатора звена В этой схемы для направления Hj равно единице (q=1). Будем считать, что к рассматриваемому моменту времени вызов поступил на один из входов схемы, к примеру на второй вход первого коммутатора.

Установление соединения через схему, т. е. между определенным входом и одним из выходов рассматриваемого направления Hj, заключается в использовании одной из свободных промежуточных линий и одного из свободных выходов требуемого направления, взаимно доступных друг другу. Для обслуживания поступившего вызова в рассматриваемом случае могут быть использованы т промежуточных линий и т выходов требуемого направления, которые выделены на рис. 9.1 жирными линиями. Соединение может быть установлено, если имеется пара свободных и взаимно доступных звеньев. Если такой пары нет, то наступают потери соединений.

Таким образом, потери возникают в трех случаях: 1) если заняты все промежуточные линии, которые могут быть использованы для поступившего вызова;

2) если заняты все выходы в требуемом направлении;

3) когда возникают неудачные комбинации свободных промежуточных линий и свободных выходов.

Если считать, что рассматриваемый вызов поступил на отмеченный вход первого коммутатора в момент, когда i промежуточных линий из т, подключенных к выходам данного коммутатора, заняты, то для подключения входа к одному из выходов требуемого направления могут быть использованы только оставшиеся т–i промежуточных линий. Если же выходы требуемого направления, соответствующие этим т–i линиям, заняты, то наступят потери. Это утверждение справедливо для любого i, лежащего в пределах 0im, и охватывает два случая занятости: всех промежуточных линий (i = m) и всех выходов в направлении (i=0).

Если вероятность занятия любых i из m промежуточных линий, принадлежащих одному коммутатору первого звена, обозначить через Wi, а вероятность занятия определенных т–i выходов (соответствующих свободным промежуточным линиям) – через Нт-i, то в соответствии со сказанным можно записать следующее выражение для потерь1:

Записанная формула справедлива при выполнении следующих двух предположений:

1. Независимость событий, описываемых вероятностями Wi и Hm–i. (Предположения являются условными, так как промежуточные линии и выходы занимаются парами.) 2. Случайное (равновероятное) занятие промежуточных линий и выходов. При этом все вероятности занятия i промежуточных линий считаются в (9.1) равными между собой вне зависимости от того, какие i из т линий заняты. (При наличии определенного порядка занятия промежуточных линий это предположение несправедливо.) Для подсчета потерь в соответствии с выражением (9.1) необходимо знать вероятности Wi и Нт-i, т. е. функции распределения вероятностей занятия промежуточных линий и выходов.

Комбинаторный метод Якобеуса предусматривает использование распределений Эрланга и Бернулли. При использовании распределения Эрланга вероятность занятия i любых соединительных устройств в пучке из m таких устройств при интенсивности нагрузки у Эрл на пучок принимается равной а вероятность занятия m–i фиксированных соединительных устройств в пучке из m устройств где выражение Ет(у) –это потери в полнодоступном пучке из т соединительных устройств при интенсивности нагрузки у Эрл на пучок, вычисленные по формуле Эрланга, т. е.

a Ei(y) –потери при той же интенсивности нагрузки в пучке из i соединительных устройств, т. е.

При использовании распределения Бернулли (биномиальное распределение) вероятность Следует иметь в виду, что Wi и Hm-i зависят также от у и т, т. е. Wi= Wm, i (y);

Hm-i= Нт, m-i(y).

Wi занятия i любых соединительных устройств в пучке из т устройств при интенсивности нагрузки у Эрл на пучок принимается равной где Сim– число сочетаний из т по i;

– средняя нагрузка, обслуженная одним соединительным устройством в пучке.

Вероятность Hm-i занятия т–i фиксированных соединительных устройств при тех же условиях принимается равной Распределение Эрланга предполагает неограниченное число источников нагрузки, а (9.2) и (9.3) основываются на интенсивности поступающей нагрузки. Распределение Бернулли предполагает ограниченное число источников нагрузки, не превышающее число соединительных устройств, а в (9.4) и (9.5) входит обслуженная нагрузка.

Естественно, что величина вероятности потерь при использовании различных распределений получится различной. Метод рекомендует принимать распределение Эрланга при определении вероятности занятия тех соединительных устройств, для которых число источников нагрузки больше числа соединительных устройств. Использование распределения Бернулли считается целесообразным при числе источников нагрузки, примерно равном числу соединительных устройств, для которых определяются вероятности занятия.

Расчетные формулы для определения вероятности потерь в двухзвеньевой схеме можно получить, если в общее выражение для потерь (9.1) подставить выражения для Wi и Hm-i.

9.3. Потери в двухзвеньевых схемах при отсутствии сжатия и расширения При отсутствии сжатия (концентрации) и расширения число входов в каждый коммутатор первого звена п равно числу выходов т в каждом из этих коммутаторов. В данном случае для промежуточных линий, в соответствии с рассматриваемым методом, можно принять распределение Бернулли, так как число источников телефонной нагрузки, которыми являются входы, равно числу соединительных устройств (промежуточных линий). Если для выходов двухзвеньевой схемы можно также принять распределение Бернулли, что может быть справедливым при небольшом числе коммутаторов первого звена, тогда Wi и Hm-i будут иметь следующие выражения:

относя Wi к промежуточным линиям, получим Wi=Cimbi(1–b)т-i где Сiт – число сочетаний из т по i;

b – средняя интенсивность нагрузки, обслуженной одной промежуточной линией, Эрл;

для вероятности Нт-i, отнесенной к выходам, выражение имеет вид Нт-i=сm-i, где с – средняя интенсивность нагрузки, обслуженной одним выходом рассматриваемого направления, Эрл.

Подставляя значения Wi и Hm-i в (9.1), получаем Учитывая формулу бинома Ньютона, получаем Если число коммутаторов k в первом звене велико, тогда для выходов рассматриваемого направления целесообразно принять распределение Эрланга. Относя Wi к направлению, а Hm-i к промежуточным линиям, получим где у – интенсивность поступающей нагрузки на направление, Эрл. Подставляя эти выражения в (9.1), получаем Вынося затем несуммирующиеся множители за знак суммы, находим Используя указанное ранее обозначение для первой формулы Эрланга, получаем выражение для потерь в рассматриваемом случае:

Если для образования направления отводится в каждом коммутаторе второго звена q выходов, то для случая, когда и занятие выходов и занятие промежуточных линий можно описать распределением Бернулли, будем иметь Wi=Cimbi(1–b)т-i;

H(m-i)q=c(m-i)q. Подставляя эти выражения в (9.1) и учитывая формулу бинома Ньютона, получаем Если занятие выходов подчиняется распределению Эрланга, а занятие промежуточных линий – распределению Бернулли, то в этом случае выражение для потерь при некоторых дополнительных ограничениях может быть преобразовано к виду В соответствии с рассматриваемым методом данная формула может применяться и для дробных значений q.

Следует отметить, что выражения (9.8) и (9.9) имеют более общий вид и включают в себя соответственно (9.6) и (9.7), которые можно получить из первых двух, полагая q=1.

9.4. Потери в двухзвеньевых схемах при наличии сжатия или расширения В схемах со сжатием (концентрацией) число входов п в коммутатор первого звена больше числа выходов m из этого коммутатора. В таких схемах потери возникают из-за наличия неудачных сочетаний занятых промежуточных линий и выходов, а также при поступлении на входы коммутатора первого звена более m вызовов.

Если при q1 и распределении Бернулли для промежуточных линий и выходов Wi отнести к промежуточным линиям, а H(m-i)q – к выходам рассматриваемого направления, то можно записать Wi=Cinal(l–а)n-i и Н(m-i)q=c(m-i)q, где а – средняя интенсивность нагрузки, обслуженной одним входом коммутатора первого звена. Потери для данного случая определяются следующим образом:

В этом выражении первое слагаемое учитывает потери из-за неудачных сочетаний при занятиях промежуточных линий и выходов, а второе – потери за счет поступления более т вызовов в один коммутатор первого звена.

Если искание свободных выходов в схемах с q>1 производить в два этапа, т. е. таким образом, чтобы в первую очередь занимались все выходы в q–1 столбцах (группах) выходов и только после этого занимались бы выходы последнего столбца (группы) q, то можно приближенно выразить потери для схем с концентрацией при q1:

где b=(п/т)а.

Для случая неупорядоченного занятия выходов в направлении достаточно точные результаты дает выражение (9.8).

Если для первого звена сохранить распределение Бернулли, а для второго звена принять распределение Эрланга, то для двухэтапного искания можно получить следующее приближенное выражение для потерь:

В схемах с расширением число входов п в каждый коммутатор первого звена меньше числа выходов m из коммутатора. В такой схеме число одновременных вызовов не превышает п, а следовательно, меньше т, поэтому потери могут иметь место только за счет неудачных сочетаний занятых промежуточных линий и выходов. Если и для промежуточных линий и для выходов справедливо распределение Бернулли, то при q1 и Wi, отнесенном к промежуточным линиям, можно записать Wi=Cinai(1–а)п-i;

Н(т–i)q=с(т-i)q. Подставляя значения этих вероятностей в (9.1), получаем Учитывая формулу бинома Ньютона, получаем окончательное выражение для потерь:

Если, сохранив распределение Бернулли для промежуточных линий, принять распределение Эрланга для выходов, то для вероятности потерь в данном случае может быть получено выражение Рассмотренные выше схемы относятся к случаю односвязного двухзвеньевого включения, при котором один коммутатор первого звена соединен с коммутатором второго звена одной промежуточной линией. При наличии f соединительных путей между парой коммутаторов первого и второго звеньев многосвязная двухзвеньевая схема будет иметь вид, показанный на рис. 9.2.

Для многосвязных двузвеньевых схем в соответствии с комбинаторным методом считаются справедливыми все полученные выше формулы, если а заменить на af, a b заменить на bf.

9.5. Двухзвеньевые неполнодоступные схемы В парагр. 9.1–9.4 рассматривались двухзвенъевые схемы, у которых число соединительных устройств, требуемых для обслуживания телефонной нагрузки в каком-то направлении, не превышало числа mq, т. е. числа выходов, отводимых в схеме для рассматриваемого направления (максимальная доступность). Однако если приведенные в предыдущем параграфе схемы рассматривать как схемы отдельных блоков искания, то может оказаться, что для целой ступени искания, содержащей несколько указанных блоков, в данном направлении требуется такое число выходов для включения приборов последующей ступени искания, которое превышает число выходов, отведенных для этого направления в каждом блоке. В этом случае приборы последующей ступени искания включаются неполнодоступным пучком по отношению к выходам каждого блока в отдельности.

На рис. 9.3 приведена двухзвеньевая неполнодоступная схема, содержащая g двухзвеньевых схем (блоков), из которых показана первая и последняя. Если число выходов из каждого блока равно mq, а число таких блоков g, то из общего числа выходов всех блоков, равного gmq, путем запараллеливаний получают число v выходов, необходимое для включения приборов последующей ступени искания. При этом справедливо следующее неравенство: mq<

Комбинаторный метод Якобеуса для расчета числа соединительных устройств в таких двухзвеньевых неполнодоступных схемах основывается на идее О'Делла, изложенной в гл. 8.

Эта идея заключается в том, что средняя интенсивность нагрузки, обслуживаемой каждым соединительным устройством при неполнодоступном однозвеньевом включении в пучке из v таких устройств, обслуживающих интенсивность поступающей нагрузки у при доступности d с потерями р, принимается лежащей в промежутке между минимальным значением уd/d, где yd определяется из соотношения d и максимальным значением p. Минимальное значение средней пропускной способности определяется для случая =d. В данном случае неполнодоступное включение превращается в полнодоступное и при потерях р пучок в d соединительных устройств обслужит нагрузку, которую при малых потерях можно приближенно принять равной yd в соответствии с формулой Эрланга (9.14) для полнодоступного включения.

Максимальное значение пропускной способности определяется из формулы Эрланга для ступенчатого включения, имеющей вид где уyо– нагрузка, обслуживаемая пучком приборов при ступенчатом включении с доступностью d и потерях р. Каждый прибор может обслужить в среднем нагрузку, d определяемую (9.15), cmax = y / = p лишь в случае бесконечно большого числа приборов в пучке. В соответствии с идеей О'Делла из всех v соединительных устройств пучка при ступенчатом включении каждый из d приборов обслуживает среднюю нагрузку, равную yd/d, d а остальные –d приборов обслуживают каждый в среднем cmax = p.

Тогда при малой величине потерь число соединительных устройств в пучке ступенчатого включения с доступностью d, обслуживающем интенсивность поступающей нагрузки у, определится из формулы О'Делла:

Если для двухзвеньевого неполнодоступного включения (см. рис. 9.3) применить тот же ход рассуждений, что и для неполнодоступного однозвеньевого включения, то минимальное значение средней пропускной способности будет в том случае, когда = mq, т. е. когда общее число выходов будет равно числу выходов, доступных каждому входу. В этом случае двухзвеньевая неполнодоступная схема превращается в двухзвеньевую полнодоступную схему и пропускаемая нагрузка yd=ymq будет определяться из формул, полученных в предыдущем параграфе.

Для случая отсутствия сжатия и расширения (п=т) распределения Бернулли для промежуточных линий и распределения Эрланга для выходов справедлива ф-ла (9.9), в соответствии с которой утq определится из выражения Выходы двухзвеньевой неполнодоступной схемы достигнут максимального значения средней пропускной способности в том случае, когда число выходов будет велико. В этом случае при расчете схемы следует принимать распределение Бернулли и для промежуточных линий и для выходов. Тогда стах определится из следующего соотношения:

полученного на основании (9.8).

Следовательно, в соответствии с идеей О'Делла средняя интенсивность нагрузки, обслуживаемой каждым из mq выходов в двухзвеньевой неполнодоступной схеме, имеющей выходов, будет равна ymq/mq, где ymq определяется (9.19). Остальные –mq выходов пропустят каждый в среднем стах нагрузки, значение которой определится (9.20).

Таким образом, число выходов при двухзвеньевом неполнодоступном включении, которое необходимо для обслуживания нагрузки у с потерями р, определится по аналогии с соотношением (9.16) из следующего уравнения:

где ymq и стах определяются (9.19) и (9.20).

Если ввести обозначение =mq–ymq/cmax, то для расчета числа выходов в схеме при отсутствии концентрации и расширения для q1 получим следующую систему уравнений:

В этих уравнениях: – число выходов двухзвеньевой неполнодоступной схемы в рассматриваемом направлении (число соединительных устройств последующей ступени искания);

у – интенсивность поступающей нагрузки на все выходов рассматриваемого направления;

mq – максимальное число выходов, доступных любому входу;

b – средняя интенсивность нагрузки, обслуживаемой одной промежуточной линией;

р – допустимые потери;

ymq – интенсивность нагрузки, поступающей на mq выходов при величине потерь р, определяемой (9.19);

стах – предельная пропускная способность выхода при неограниченном числе выходов, определяемая (9.20).

Рассуждения, которые приведены выше, дают возможность получить аналогичные системы уравнений для расчета числа соединительных устройств при использовании других типов двухзвеньевых неполнодоступных схем. Составление системы производится следующим образом. Используется формула О'Делла (9.16) в записи (9.17) и (9.18), где вместо d введена максимальная доступность двухзвеньевой неполнодоступной схемы. Для определения двух пределов нагрузки, обслуженной каждым выходом, к последующей ступени искания в рассматриваемом направлении берутся две формулы, справедливые для двухзвеньевого полнодоступного включения. Нижний предел определяется по формуле, полученной в предположении справедливости для выходов направления распределения Эрланга, а верхний предел – по формуле, использующей для выходов распределение Бернулли. Эти формулы выбираются конкретно для каждого рассматриваемого примера в зависимости от величины отношения т/п, величины q и способа отыскания свободного выхода в направлении. Все системы уравнений дают приемлемые результаты, если для заданной интенсивности нагрузки, потерь и параметров схемы число выходов к последующей ступени искания удовлетворяет следующему неравенству: mq(g/2)mq, где g – число блоков искания, объединяемых неполнодоступным включением.

9.6. Метод эффективной доступности Метод эффективной доступности пригоден как для полнодоступных, так и неполнодоступных двухзвеньевых схем. Он основан на понятии переменной доступности, которое можно уяснить из рассмотрения схемы рис. 9.1. В режиме группового искания в выходы этой схемы включаются соединительные устройства нескольких направлений. Для подключения соединительных устройств последующей ступени, принадлежащих одному направлению, в каждом коммутаторе второго звена в общем случае может отводиться q выходов. На рис. 9.1 показано направление Hj, в котором для каждого коммутатора второго звена имеется только по одному выходу (q=1).

В рассматриваемой схеме каждому входу доступен любой выход требуемого направления только тогда, когда нет занятых соединительных путей. В этом случае доступность выходов данного направления будет максимальной (все выходы доступны) и при q=1 будет равна т. В общем случае dmax=mq.

Если занята одна промежуточная линия, то для всех входов в том коммутаторе, из которого она выходит, доступность выходов в указанном направлении уменьшится на единицу для случая q=1 и на q в общем случае, так как занятая промежуточная линия заблокирует выходы рассматриваемого направления, к которым можно подключиться с ее помощью.

При наличии i занятых промежуточных линий для всех входов в этот коммутатор, в котором имеются занятые i линий, доступность уменьшается на iq и составит величину Минимальная доступность выходов рассматриваемого направления для случая сжатия (п>т) равна нулю, так как для (m+1)-го занятия, поступающего на вход коммутатора, из-за занятости всех т промежуточных линий невозможно подключение ни к какому выходу, даже при наличии свободных выходов. Для схем с расширением или без расширения и сжатия (пт) минимальная доступность больше нуля и составляет величину так как к моменту поступления последнего вызова (п–1)-я промежуточная линия занята и, следовательно, доступность уменьшилась на величину (п–1)q. Таким образом, в процессе работы двухзвеньевой схемы в режиме группового искания доступность di выходов (соединительных устройств последующей ступени искания) меняется в пределах между наибольшим и наименьшим значениями:

Каждое из значений доступности di появляется с вероятностью Wi, где Wi – вероятность занятия i промежуточных линий из т линий, принадлежащих одному коммутатору первого звена.

Вероятность Wi можно трактовать как долю времени в течение рассматриваемого интервала, в пределах которого занято i промежуточных линий, т. е. в течение которого существует доступность di. Тогда работу схемы в интервал времени, в пределах которого занято i промежуточных линий, можно уподобить работе схемы неполнодоступного включения с доступностью di, а потери pi, которые возникнут в это время, будут определяться значением доступности di. Так как значения di определяются соотношением (9.24), то потери р в случае включения соединительных устройств в выходы двухзвеньевой схемы будут меньше, чем при неполнодоступном включении с доступностью dmin (т. е. меньше ртах), и больше, чем при неполнодоступном включении с доступностью dmax (т. е. больше ртiп) Соотношение (9.25) означает, другими словами, что рассматриваемая двухзвеньевая схема с точки зрения потерь будет хуже однозвеньевого неполнодоступного включения с доступностью dmax и лучше неполнодоступного включения с доступностью dmin.

Из этого же соотношения следует, что всегда найдутся такие два значения доступности, dj и dj+1, где j – целое положительное число, для которых будет справедливо Это означает, что для данной двухзвеньевой схемы существует эквивалентное ей с точки зрения потерь однозвеньевое неполнодоступное включение. Доступность такого неполнодоступного включения с потерями, равными потерям в двухзвеньевой схеме, назовем эффективной доступностью и обозначим dэ. Из соотношения (9.25) вытекает, что Если зависимость вероятности потерь р от доступности d при определенных значениях интенсивности нагрузки у и числа соединительных устройств последующей ступени искания выражается функцией то вероятность потерь при использовании двухзвеньевой схемы запишется следующим образом:

где r=п–1 при nm или r=m при n>m.

Значение р из (9.29) будет удовлетворять неравенству (9.26). Так как эффективная доступность определяется из равенства потерь, то для ее вычисления можно использовать такое соотношение:

Значение эффективной доступности, определяемое из (9.30), лежит в пределах (j – целое положительное число) и может быть дробным, причем дробное значение эффективной доступности следует понимать в смысле соотношения (9.26).

Можно показать, что если функциональная зависимость (9.28) является линейной, т. е.

p=Ad + B, то из соотношения (9.30) следует, что где d – математическое ожидание доступности.

В общем случае справедливо следующее соотношение для эффективной доступности:

Соотношение (9.33) по сравнению с неравенством (9.27) сужает диапазон, в котором может лежать значение dэ. Этот диапазон определяется неравенствами Неравенство (9.34) можно записать в более удобном для вычислений виде:

где – коэффициент, определяемый зависимостью потерь от доступности и распределением Wi (вероятностей доступности).

Минимальная доступность dmin рассчитывается по (9.23), если она не равна нулю в случаях, указанных выше. Математическое ожидание доступности где уm – интенсивность нагрузки, обслуженной т промежуточными линиями.

Таким образом, для определения d можно пользоваться следующей приближенной формулой:

Для двухсвязной схемы f=2 (см. рис. 9.2) математическое ожидание доступности можно определить из следующего выражения:

После определения эффективной доступности расчет двухзвеньевой схемы сводится к применению таблиц или формул для неполнодоступного включения. В частности, можно пользоваться ф-лой (8.36). Для заданных величин доступности и потерь эта формула является линейной зависимостью:

Выбор величины должен производиться в зависимости от характера применяемой расчетной формулы неполнодоступного включения. При использовании (8.36) величину коэффициента можно принимать в пределах 0,75–0,85, величины и см. [12].

Расчет по методу эффективной доступности производится в следующем порядке. По (9.23) определяют значение минимальной доступности dmin для случая, когда она не равна нулю.

Далее по (9.36) находят величину математического ожидания доступности d, а затем определяют эффективную доступность dэ из соотношения (9.35). Если dэ по условиям точности расчетов можно заменить ближайшим целым числом, то определяют коэффициенты и расчетной ф-лы (9.37) в зависимости от полученной величины dэ и требуемой величины потерь. Наконец, число соединительных устройств, которое должно быть включено в выходы рассматриваемой двухзвеньевой схемы для обслуживания интенсивности поступающей на них нагрузки при заданных потерях, рассчитывается по (9.37).

9.7. Структура многозвеньевых коммутационных схем Помимо двухзвеньевых коммутационных схем в коммутационной технике широко применяются многозвеньевые схемы. В частности, квазиэлектронные системы коммутации используют четыре – восемь звеньев соединения.

На рис. 9. приведена трехзвеньевая схема, показанная в двух вариантах. Если в схеме между любым из входов и любым коммутатором последнего звена имеется не более одного соединительного пути, то такую структуру называют веерной (рис. 9.4а);

если число соединительных путей более одного, структуру называют связанной (рис. 9.4б).

Обозначения структурных параметров для трехзвеньёвой схемы, приведенной на рис. 9.4, аналогичны обозначениям параметров двухзвеньевой схемы. Трехзвеньевая схема помимо режима группового искания может быть использована и в режиме индивидуального искания (кроме веерной, так как она имеет не более одного пути между заданным входом и требуемым выходом). В этом случае в каждом направлении имеется лишь один выход.

На рис. 9.5а приведена четырехзвеньевая коммутационная схема с неделимой структурой, т. е. со структурой, которая не распадается на блоки, а на рис. 9.5б – четырехзвеньевая схема блочной структуры. При блочном построении коммутаторы первого и второго звеньев, а также третьего и четвертого звеньев соединяются таким образом, что представляют собой отдельные двухзвеньевые блоки. Несколько таких блоков образует левую группу, находящуюся в первых двух звеньях. Аналогичное построение имеет и правая группа (третье и четвертое звенья). Левые и правые двухзвеньевые блоки связаны между собой. Схему, приведенную на рис. 9.5б, иногда называют итерационной схемой, так как ее можно получить, заменяя каждый коммутатор двухзвеньевой схемы такой же двухзвеньевой схемой.

На этом рисунке число коммутаторов в каждом звене обозначено k1,...,k4, a число коммутаторов в каждом блоке соответствующего звена обозначено l1,...,l4.

Для построения коммутационных схем с большим числом звеньев могут быть использованы те же закономерности структуры, которые показаны на примерах двух– четырехзвеньевых схем. Так, например, восьмизвеньевая схема может быть построена из нескольких четырехзвеньевых схем (см. рис. 9.5), соединенных между собой в одну общую схему. На рис. 9.6 приведен один из вариантов такой восьмизвеньевой схемы. Коммутаторы каждой пары соседних звеньев образуют двухзвеньевые блоки. Несколько двухзвеньевых блоков связывается между собой и образует четырехзвеньевую схему в соседних четырех звеньях. Такие укрупненные четырехзвеньевые блоки объединяются, в свою очередь, в восьмизвеньевую схему.

На основе рассмотренных схем легко представить себе построение схем с числом звеньев более восьми.

Существенную роль в коммутационных схемах играет отношение числа выходов к числу входов на каждом звене, которое называется коэффициентом расширения, если это отношение больше единицы, или коэффициентом концентрации, если оно меньше единицы. Для трехзвеньевой схемы, приведенной на рис. 9.4, таким образом, можно рассматривать три коэффициента: 1=вх=1,2/N;

2=2,3/1,2;

3=вых=M/2,3. В схемах с любым числом звеньев количество коэффициентов а равно числу звеньев.

В режиме группового искания, когда заданный вход схемы должен быть подключен к любому свободному выходу требуемого направления, схемы, как правило, должны иметь расширение. Особо существенную роль играют коэффициенты вх и вых, относящиеся к первому и последнему звеньям. Если считать, что во всех звеньях, кроме первого и последнего, нет ни концентрации, ни расширения (число входов в коммутаторы равно числу выходов), тогда по отношению к значениям коэффициентов концентрации или расширения на входе и выходе имеет место девять типов коммутационных схем, приведенных на рис. 9.7.

Условные изображения схем показаны применительно к четырехзвеньевым схемам.

Первые три типа схем (схемы а–в) относятся к случаю, когда на входе схемы (в первом звене) имеется расширение. Последние три типа (схемы ж–и) – это схемы с концентрацией на входе, а остальные три типа схем не имеют ни концентрации, ни расширения в первом звене. Каждой из схем в этих трех группах соответствуют три возможных значения коэффициента вых в последнем звене (на выходе).

Естественно, что коммутационные схемы связанной структуры, имеющие более двух звеньев, могут использоваться в режиме индивидуального искания, т. е. в таком режиме, когда заданный вход, на который поступает вызов, должен быть подключен к одному вполне определенному выходу.

9.8. Способы межзвеньевых соединений и методы искания в многозвеньевых схемах Вероятность потерь в звеньевых блокирующих коммутационных схемах зависит от многих факторов. В первую очередь она зависит от характера потока вызовов и величины поступающей нагрузки. Существенная зависимость вероятности потерь наблюдается от структуры коммутационной схемы: размеров коммутаторов, числа промежуточных линий между коммутаторами, наличия или отсутствия расширения (концентрации) в каждом из звеньев, наличия или отсутствия блоков, веерной или связанной структуры и других характеристик структуры. Установлено также, что вероятность потерь зависит от способа межзвеньевых соединений л метода искания свободных промежуточных линий (выбора пути установления соединения для поступающего вызова).

В звеньевых коммутационных схемах наиболее часто используются два способа межзвеньевых соединений, показанных на рис. 9.8 и 9.9. На первом рисунке изображен способ последовательных межзвеньевых соединений, при котором номера занимаемых входов в коммутаторах звена В соответствуют номеру коммутатора в звене А. На втором рисунке приведен способ циклических межзвеньевых соединений. При этом способе осуществляется циклический сдвиг номера занимаемого входа в коммутаторах звена В при переходе от одного выхода из коммутатора звена А к другому. Любой из указанных двух способов соединений при неделимой структуре может применяться независимо от другого между любой парой соседних звеньев. При блочной структуре каждый из способов может использоваться как внутри блока, так и для междублочных соединений. Таким образом, для схемы с несколькими звеньями число вариантов межзвеньевых соединений может быть значительным.

Методами искания, наиболее часто применяемыми в коммутационной технике, считаются:

последовательное искание из фиксированного исходного положения, последовательное искание из случайного положения. Второй из этих способов дает такие же результаты, как и равновероятное случайное искание (равновероятный выбор любой свободной промежуточной линии).

Каждый из указанных методов искания может независимо от другого использоваться между любой парой звеньев как внутри блоков, так и на междублочных промежуточных линиях.

9.9. Расчет многозвеньевых коммутационных схем в режиме группового искания. Метод КЛИГС Комбинаторный метод Якобеуса, рассмотренный на примере двухзвеньевых схем, без существенных усложнений может быть использован для расчета трехзвеньевых схем.

Некоторые четырехзвеньевые схемы также можно проанализировать комбинаторным методом, принимая простейшие предположения о распределениях вероятностей занятия промежуточных линий в отдельных звеньях. Использование комбинаторного метода для схем с большим числом звеньев (пять и более) в настоящем его виде затруднительно.

Метод эффективной доступности приспособлен для расчета двухзвеньевых схем в режиме группового или свободного искания, а также трехзвеньевых схем в режиме индивидуального искания. Однако обобщение этого метода возможно для схем с большим числом звеньев.

Если вместо эффективной доступности использовать среднюю доступность, то анализ многозвеньевых коммутационных схем дополнительно упрощается.

Таким образом, комбинаторный метод и метод эффективной доступности в основном обеспечивают расчеты числа соединительных устройств, включаемых в выходы двухзвеньевых коммутационных схем. При проектировании отечественных АТС координатной системы (АТСК и АТСКУ) определение объема коммутационного оборудования сводится к анализу двухзвеньевых схем, поэтому данные методы позволяют обеспечить нужды проектирования таких АТС.

Структура квазиэлектронных АТС такова, что для их анализа и проектирования необходимо рассматривать коммутационные схемы с четырьмя, шестью и более звеньями соединений. Из-за сложности расчета схем с большим числом звеньев, связанной в основном со сложностью их структуры, до последнего времени, за исключением метода вероятностных графов, не было даже приближенных инженерных методов анализа многозвеньевых схем.

Использование понятия эффективной доступности и методов статистического моделирования позволило А. Лотце разработать приближенные методы расчета многозвеньевых схем в режиме группового искания (метод КЛИГС) и в режиме индивидуального искания (метод ППЛ), а также предложить метод оптимизации коммутационных схем по числу точек коммутации.

Метод КЛИГС получил сокращенное название от английских слов, означающих «расчет звеньевых систем группового искания». Метод основывается на понятиях средней доступности (свободный веер) dcp, средней недоступности (занятый веер) dcp, максимальной доступности (максимальный веер) dmax коммутаторов последнего звена от любого свободного входа первого звена. С помощью этих понятий определяется эффективная доступность dэ, значение которой позволяет вычислить вероятность потерь, пользуясь модифицированной формулой Пальма – Якобеуса. Используем следующие обозначения:

тi – число выходов коммутатора i-ro звена;

ki – число коммутаторов i-ro звена;

s – число звеньев;

qr– число выходов из одного коммутатора последнего звена в направлении r;

r – число линий в пучке r-го направления;

М – общее число выходов схемы;

i, i+1 – общее число промежуточных линий между соседними звеньями;

вx=1,2/N – коэффициент расширения на входе;

вых=M/s-1, s– коэффициент концентрации на выходе. Тогда где yi – обслуженная нагрузка коммутатора i-ro звена.

На соотношение (9.38) налагается следующее ограничение:

которое означает, что средняя доступность коммутаторов любого звена от любого свободного входа не может превышать числа коммутаторов в соответствующем звене.

Величина dcр равна среднему числу коммутаторов последнего звена, доступных от любого свободного входа в первом звене через свободные промежуточные линии между звеньями.

Максимальная доступность определяется выражением и равна максимальному числу коммутаторов последнего звена, доступных от любого свободного входа первого звена. Она равна средней доступности при нулевой нагрузке и ограничена соотношением dmaxks. Средняя недоступность определяется соотношением и соответствует среднему числу недоступных коммутаторов последнего звена, равному разности между количеством коммутаторов, доступных при нулевой нагрузке и заданной обслуженной нагрузке.

В рассматриваемом методе эффективная доступность определяется как сумма двух слагаемых:

Первое из этих слагаемых является функцией dcp, определяется соотношением и представляет собой среднее число выходов рассматриваемого r-го направления, которые могут заниматься через промежуточные линии, образующие среднюю доступность (свободный веер). Второе слагаемое эффективной доступности задается выражением где yor – обслуженная нагрузка r-го направления;

уo – общая обслуженная нагрузка.

Произведение первых двух сомножителей в правой части (9.44) выражает число выходов рассматриваемого направления, находящихся в недоступных коммутаторах последнего звена.

Умножением на третий множитель yor/r получаем среднее число занятых выходов рассматриваемого направления, которые находятся в недоступных коммутаторах. Четвертый множитель представляет собой отношение среднего числа свободных входов в последнее звено к общему числу выходов последнего звена и является коэффициентом, учитывающим степень концентрации в последнем звене.

После определения эффективной доступности по (9.42) считают, что вероятность потерь в многозвеньевой схеме равна вероятности потерь в однозвеньевой схеме с доступностью, равной эффективной доступности. Для расчета вероятности потерь р применяется модифицированная формула Пальма – Якобеуса (см. гл. 8) В числителе (9.45) стоит функция Эрланга, выражающая потери в полнодоступном пучке, содержащем r линий, на который поступает некоторая фиктивная нагрузка уфr, в знаменателе – функция Эрланга, выражающая потери в полнодоступном пучке из r–dэ линий при той же нагрузке. Фиктивная нагрузка уфr определяется из соотношения а фактически поступающая на направление нагрузка уr определится затем из соотношения Точность рассмотренного метода проверена статистическим моделированием. Метод позволяет определить вероятность потерь в многозвеньевых схемах, в которых число промежуточных линий между всеми звеньями одинаково, а вх1 и вых1, при этом схемы могут иметь как веерную, так и связанную структуры неделимого или блочного типа.

При использовании s-звеньевых блокирующих коммутационных схем в режиме индивидуального искания пучок, состоящий из ns промежуточных линий между предпоследним и последним звеньями, входящих в тот коммутатор последнего звена, в который включен требуемый выход, можно рассматривать (рис. 9.10) как некоторое направление j коммутационной схемы с числом звеньев на единицу меньше (схемы с s–1 звеном). В этом случае работа s-звенье-вой схемы в режиме индивидуального искания эквивалентна работе (s–1)-звеньевой схеме в режиме группового искания. Поэтому методы расчета, применимые в режиме группового искания, могут быть использованы для расчета схем в режиме индивидуального искания. В частности, метод КЛИГС, предложенный А. Лотце для режима группового искания, можно применить для схем, используемых в режиме индивидуального искания. Для многозвеньевых блокирующих схем, работающих в режиме индивидуального искания, разработаны также специальные методы расчета.

9.10. Метод вероятностных графов Метод основывается на представлении коммутационной схемы в виде графа, конфигурация которого зависит не только от структуры схемы, но и от режима искания, в котором используется схема. Переход от коммутационной схемы практически любой сложности к графу не представляет принципиальных трудностей. Граф, представляющий собой картину всевозможных путей между заданным входом схемы и заданным выходом (или одним из выходов заданной группы), может принадлежать к классу параллельно последовательных графов или к классу непараллельно-последовательных (мостиковых) графов.

Дальнейшая процедура метода вероятностных графов заключается в том, чтобы записать функцию для вероятности потерь при установлении соединений в рассматриваемом графе между его входными и выходными полюсами, аргументами которой являются вероятности занятости отдельных дуг графа. Для определения вероятностей занятости дуг обычно используют значение средней интенсивности нагрузки, обслуженной каждой из них.

Записанная таким образом функция позволяет определить вероятности потерь или оптимизировать структуру по числу точек коммутации или другим показателям.

Для того чтобы уяснить соответствие между коммутационной схемой и представляющим ее графом и способ перехода от схемы к графу, рассмотрим графы отдельных типовых коммутационных схем. Трехзвеньевая коммутационная схема, приведенная на рис. 9.4б, в зависимости от режима искания будет соответствовать одному из вероятностных графов, изображенных на рис. 9.11. При построении этих графов считаем, что коммутационная схема – односвязная (одна промежуточная линия между каждой парой коммутаторов соседних звеньев), а структурные параметры схемы удовлетворяют следующим соотношениям: k2=m1;

п2=k1;

k3=m2;

n3=k2=m1.

На рис. 9.11а приведен вероятностный граф трехзвеньевой коммутационной схемы, используемой в режиме индивидуального искания (определенный вход должен быть подключен к точно указанному выходу). Дуги Ai, соединяющие входной полюс А и вершины i, изображают промежуточные линии между звеньями 1 и 2, дуги i, соединяющие вершины i с вершиной, изображают промежуточные линии между звеньями 2 и 3, а дуга В, соединяющая вершину с выходным полюсом В, изображает выход коммутационной схемы, к которому должен быть подключен заданный вход при использовании схемы в режиме индивидуального искания (режим И).

При такой конфигурации графа совокупность всех путей награфе, содержащих дуги, лежащие между входным и выходным полюсами (полюса A и В), является совокупностью всех возможных путей установления соединения анализируемой коммутационной схемы в рассматриваемом режиме искания.

На рис. 9.11б приведен вероятностный граф той же трехзвеньевой коммутационной схемы, используемой в режиме группового искания (определенный вход должен быть подключен к одному из свободных выходов в заданной группе – направлении). Граф изображен для случая, когда рассматриваемая группа выходов (направление) содержит только по одному выходу в каждом коммутаторе третьего звена.

На этом рисунке, как и на предыдущем, дуги Ai изображают промежуточные линии между звеньями 1 и 2, дуги ii– промежуточные линии между звеньями 2 и 3, а дуги jB – выходы рассматриваемого направления, к одному из которых должен быть подключен заданный вход в режиме группового искания (режиме Г).

Рассматриваемый граф, как и в предыдущем случае (рис. 9.11а), изображает совокупность всех возможных путей установления соединения в анализируемой схеме (см. рис. 9.4б) в режиме группового искания.

На рис. 9.11б приведен вероятностный граф трехзвеньевой коммутационной схемы в режиме свободного искания (режим С), в котором определенный вход должен быть подключен к одному из свободных выходов всей схемы. Этот граф отличается от предыдущего только тем, что между каждой вершиной i и полюсом В имеется не одна, а m дуг, изображающих тз выходов из каждого коммутатора третьего звена.

Если в режиме Г для рассматриваемого направления в каждом из коммутаторов третьего звена используется q выходов, то структура графа будет такой же, как показано на рис. 9.11в, a между вершинами j и полюсом В будет q дуг вместо m3.

Приведенные на рис. 9.11 три вероятностных графа трехзвеньевой схемы рис. 9.4б соответствуют, как указано выше, трем режимам искания. В режиме И трехзвеньевая схема имеет граф параллельно-последовательного типа (тип П), а в режимах Г и С – граф непараллельно-последовательного типа (тип Н).

Рассмотренные принципы построения графов трехзвеньевой коммутационной схемы позволяют построить вероятностный граф для схемы с любым числом звеньев, учитывая закономерность построения, подмеченную в рассмотренных примерах. Увеличение числа звеньев схемы приводит к возрастанию числа звеньев графа, однако принцип построения сохраняется тот же.

Запись функции потерь вида p=f(, 2,...,i,...,s), где p – вероятность потерь, a i – вероятность занятости каждой дуги i-ro звена, сводится для графов параллельно последовательного типа к умножению и суммированию вероятностей i, так как предполагается независимость событий, происходящих в различных звеньях графа (коммутационной схемы). При этом в случае параллельного включения нескольких дуг, образующих некоторую общую ветвь, для получения вероятности занятости всей ветви вычисляют произведение вероятностей занятости отдельных дуг. Если ветвь образуется последовательным включением (цепочкой) дуг, то вероятность занятости всей ветви определяется как дополнительная вероятность к вероятности свободности всей ветви, а вероятность свободности всей ветви, в свою очередь, определяется как произведение вероятностей свободности отдельных последовательно включенных дуг.

Обозначим вероятность занятости дуг для параллельно-последовательного графа, приведенного на рис. 9.11a, соответственно 1 (для дуг A), 2 (для дуг i) и 3 (для дуги B), а вероятности свободности этих же дуг через q1=1–1, q1=1–2 и q3=1–3. Тогда вероятность того, что один из путей между полюсом А и вершиной, состоящий из двух дуг, будет свободен, составит qA = q1q2, а вероятность занятости этого пути A = 1- q1q2 = 1- (1- 1) (1- 2 ).

Вероятность занятости всех т1 путей между полюсом А и вершиной р будет равна m A = m = [1- (1- 1) (1- 2 )].

A Для того чтобы подсчитать вероятность потерь р, равную вероятности занятости всех возможных путей между полюсами А и В (AB), определим вероятность свободности хотя бы одного пути между полюсами А и В как произведение вероятностей свободности ветви A и дуги B:

В свою очередь, вероятность потерь будет равна Таким образом, функция вероятности потерь для графа по рис. 9.11а будет определяться (9.48). Следовательно, для вероятности потерь трехзвеньевой схемы (см. рис. 9.4б) в режиме индивидуального искания по методу вероятностных графов также будет справедлива ф-ла (9.48).

Во многих случаях графы коммутационных схем относятся к классу непараллельно последовательных. Так, коммутационной схеме, приведенной на рис. 9.5б, в зависимости от режима искания соответствует один из графов рис. 9.12. На рис. 9.12а приведен граф для режима индивидуального искания. В режиме группового искания схема рис. 9.5б будет иметь один из графов, приведенных на рис. 9.12б, в, г.

Первый из этих графов соответствует случаю, когда к выходам одной группы относятся по одному выходу из каждого коммутатора только одного двухзвеньевого блока. Второй граф соответствует случаю, когда все выходы этого двухзвеньевого блока образуют искомую группу выходов. Третий граф справедлив для случая, когда группа выходов образуется путем использования по одному из выходов от каждого коммутатора всей схемы.

В режиме свободного искания рассматриваемая схема будет соответствовать графу на рис.

9.12д Как видно из рис. 9.12, все графы, за исключением первого (рис. 9.12а), принадлежат к классу непараллельно-последовательных графов и в их структуре существенную роль играет простейший непараллельно-последовательный (мостиковый) граф, показанный на рис. 9.11б.

Формула для вычисления вероятности потерь такого мостикого графа будет иметь вид где 1 2 и 3 – вероятности занятости дуг графа на рис. 9.11б.

Во многих случаях вычисление вероятности потерь для более сложных непараллельно последовательных графов сводится к приемам, применимым для параллельно последовательных графов в сочетании с ф-лой (9.49). В тех случаях, когда вычисление потерь для непараллельно-последовательного графа слишком громоздко, можно пользоваться методом оценочных графов.

Для рассматриваемого графа из класса непараллельно-последовательных схем подбирают два параллельно-последовательных графа, причем таким образом, чтобы вероятность потерь для одного из них была оценкой сверху вероятности потерь в рассматриваемом графе, а вероятность потерь для другого графа – оценкой снизу. Тогда искомая вероятность потерь для исследуемого графа будет заключена между двумя значениями потерь, выражения для которых легко записать.

Получение оценочных графов осуществляется с помощью некоторых операций. Граф для получения оценки по потерям сверху получают путем использования операций выбрасывания отдельных дуг и разделения одной вершины на две или несколько, что приводит к заведомому увеличению потерь. Для получения графа, пригодного для оценки вероятности потерь снизу, используются противоположные операции добавления дуг и объединения вершин, которые приводят к уменьшению потерь.

9.11. Оптимизация многозвеньевых коммутационных схем При разработке многозвеньевых схем с блокировками новые схемы получают по аналогии с уже известными, используя опыт и интуицию проектировщика. В этом случае обычно рассматривается несколько классов коммутационных схем. В пределах каждого из классов проводится возможная в рамках имеющихся методов оптимизация с последующим сопоставлением лучших вариантов каждого класса и выбором требуемой схемы. В качестве критерия при выборе структуры коммутационных схем в большинстве случаев пользуются числом точек коммутации.

Иногда при проектировании блокирующих коммутационных схем используют методику синтеза неблокирующих коммутационных схем. В таком случае по заданным характеристикам блокирующей схемы выбирают неблокирующую схему с оптимальными структурными параметрами, которая имеет большее число точек коммутации, чем требуемая блокирующая схема. Далее путем устранения некоторых соединительных путей получают блокирующую схему с заданной нормой блокировок при заданной нагрузке на один вход, которая во многих случаях близка к оптимальной.

Естественно, что при проектировании коммутационных схем существенное значение имеют методы оптимизации и особенно такие, которые позволяют выбирать оптимальную схему по заданному показателю в пределах широкого класса структур. В работах Лотце разработан метод оптимизации многозвеньевых коммутационных схем по числу точек коммутации с помощью простых аналитических выражений. Полученные формулы дают возможность определить структурные параметры схемы и удельную нагрузку на одну промежуточную линию.

Указанный метод оптимизации справедлив для многозвеньевых схем, не имеющих существенной концентрации в промежуточных звеньях, за исключением последнего. В первом звене целесообразно использовать расширение. Метод не требует применения каких либо приближенных формул для определения вероятности потерь. Используются лишь две характеристики: нагрузка, обслуженная одним входом первого звена (ai), и прозрачность схемы (Т).

Если суммарное число выходов последнего звена остается постоянным, то число исходящих направлений, на которое разбиваются выходы, не влияет на результаты оптимизации. Оптимальные структурные параметры могут быть определены не только для оптимального, но и для любого другого числа звеньев.

Основные соотношения, используемые при оптимизации схем по этому методу, получаются из анализа выражения для числа точек коммутации С на один эрланг нагрузки.

Для многозвеньевых коммутационных схем с s звеньями при любой обслуженной нагрузке, отличной от нуля, это выражение имеет вид где mi – число выходов из коммутаторов i-звена;

аi – нагрузка, обслуженная одним входом i-звена.

Далее используется понятие прозрачности коммутационной схемы, под которой понимают среднее количество свободных путей в схеме между заданным входом и всеми М выходами схемы.

Значение прозрачности Т определяется выражением где yoi – нагрузка, обслуженная mi выходами одного коммутатора i-звена;

ai – нагрузка, обслуженная одним входом i-звена.

Если из (9.51) выразить т1 и подставить в (9.50), то получим следующее соотношение для С:

При синтезе блокирующих коммутационных схем величина нагрузки а1 на один вход схемы считается заданной, поэтому оптимизация структуры коммутационной схемы по числу точек коммутации заключается в том, чтобы подобрать такие емкости коммутаторов m2,...,ms и такие нагрузки на один вход коммутаторов a2,..., as, при которых число точек коммутации С на один эрланг нагрузки будет минимальным. При этом значение прозрачности Т предполагается постоянным и таким, которое гарантирует требуемые качественные показатели схемы.

Решая систему из 2 (s–1) уравнений, которая получается, если положить равными нулю частные производные по всем аргументам С/т2=...=C/ms=С/а2=...=C/as=0, получаем следующие основные формулы, используемые для оптимизации структуры:

Формулы (9.53) – (9.56) справедливы для i=2, 3,...,s и заданного числа s-звеньев схемы.

Число точек коммутации С на один эрланг нагрузки, в том числе и Сo, полученное оптимизацией по mi и ai, зависит также от числа s-звеньев схемы.

а минимальное число точек коммутации на один эрланг будет равно Оптимальное число звеньев схемы из выражения (9.56), при котором число точек коммутации на один эрланг будет минимальным, определяется следующим выражением:

Формулы (9.53) – (9.58) используются для оптимизации блокирующих многозвеньевых коммутационных схем по числу точек коммутации.

В процессе оптимизации считаются заданными общее число N входов схемы, общее число М выходов схемы, нагрузка а1 на один вход и требуемая величина прозрачности Т. По заданным величинам можно определить оптимальное значение числа звеньев sопт, а также для sопт или любого заранее выбранного s подсчитать структурные параметры схемы (m1,...,ms) и определить соответствующие нагрузки на входы (a1,...,as) и число точек коммутации на один эрланг (Сo или Cmin).

Контрольные вопросы 1. Приведите общее выражение для вероятности потерь в двухзвеньевой односвязной полнодоступной схеме ори использовании комбинаторного метода Якобеуса и укажите, при каких предположениях оно справедливо.

2. Какие распределения используются для аппроксимации вероятностей занятия промежуточных линий и выходов схемы в комбинаторном методе Якобеуса?

3. Пользуясь комбинаторным методом, запишите выражение вероятности потерь в режиме индивидуального искания (фиксированный вход схемы подключается к фиксированному выходу схемы) для трехзвеньевой схемы, приведенной на рис. 9.4, в случае квадратных коммутаторов в первом звене (N1 = M1).

4. В чем заключается идея комбинаторного метода Якобеуса для расчета двухзвеньевых яеполнодоступных схем?

5. Чему равна минимальная и максимальная доступности двухзвеньевой полнодоступной схемы с параметрами n1=10, m1=20, q=2?

6. Какова эффективная доступность двухзвеньевой схемы, приведенной на рис. 9.1, если зависимость потерь от доступности является линейной?

7. Какие методы расчета пригодны для коммутационных схем с тремя и более звеньями соединения?

8. Перечислите способы межзвеньевых соединений, используемые в многозвеньевых схемах.

9. Какие методы искания наиболее часто используются в миогозвеньевых схемах?

10. Как определяется эффективная доступность многозвеньевой схемы в соответствии с методом КЛИГС?

11. Каков порядок расчета многозвеньевых коммутационных схем в режиме группового искания по методу КЛИГС?

12. Что такое прозрачность коммутационной схемы?

13. Какова идея оптимизации многозвеньевых коммутационных схем?

14. Каким образом устанавливается однозначное соответствие между коммутационной схемой и графом?

15. Как записывается выражение для вероятности потерь в параллельно-последовательном графе?

16. Приведите формулу для определения вероятности потерь в простейшем графе непараллельно последовательного типа.

17. Изобразите графы, соответствующие двух-, трех- и четырехзвеньевым схемам в режимах свободного, группового и индивидуального исканий.

18. Как оценить величину вероятности потерь в сложном непараллельно-последовательном графе?

Г Л А В А Д Е С Я Т А Я Распределение наг руз ки и потерь на сетях связ и 10.1. Качество обслуживания на автоматически коммутируемых сетях связи Суммарные потери. Качество обслуживания потоков вызовов рассмотрим на примере автоматических телефонных сетей. В нашей стране создается общегосударственная автоматически коммутируемая телефонная сеть, в состав которой входят междугородная, внутризоновые, городские и сельские телефонные сети. Основной дисциплиной обслуживания потоков вызовов на автоматически коммутируемых телефонных сетях в нашей стране является обслуживание с явными потерями. При этом основной количественной характеристикой качества обслуживания потоков вызовов является математическое ожидание величины потерь из-за отсутствия свободных и исправных соединительных устройств при установлении соединения между двумя телефонными аппаратами.

Пусть соединительный тракт содержит п последовательно включенных ступеней искания.

Поступающий на i-ю ступень искания поток вызовов делится на ri потоков в соответствии с числом направлений, организуемых на ступени искания (рис. 10.1). Пусть на каждом направлении i-й ступени искания число соединительных устройств рассчитывается при величине потерь pi (i=1, 2,......, п). Определим результирующую величину потерь р при установлении соединения между двумя телефонными аппаратами через п ступеней искания.

Исследования сложных коммутационных систем показали, что величина р зависит от величин потерь на отдельных ступенях искания pi (i=1, 2...., n), числа ступеней искания n, числа направлений r, включаемых в каждую ступень искания, т. е. p=f(p1, р2,..., pп, п, r1, r2,...

,rn). При этом величина потерь р находится в пределах где pmax = max{pi, i = 1, 2,..., n} – максимальное из значений потерь на ступенях искания i сложной коммутационной системы.

Если на входы и выходы любого числа ступеней искания включено только одно направление, то имеет место равенство В другом предельном случае при r процессы обслуживания потоков, поступающих на направления разных ступеней искания, независимы и математическое ожидание величины потерь р при установлении соединения между двумя телефонными аппаратами через n ступеней искания определяется из выражения Действительно, вероятность того, что поступающий вызов будет обслужен на первой ступени, равна (1–р1), на второй ступени– (1–р2) и т. д., на n-й ступени– (1–рп). Тогда вероятность того, что поступающий вызов будет обслужен и на первой, и на второй, и т. д., и n на n-й ступени искания, равна (1- pi ), а искомая вероятность того, что вызов не будет i= обслужен хотя бы на одной ступени искания, определится из выражения (10.3).

В реальных коммутационных системах величина r конечна. Так как каждый вызов занимает соединительные устройства нескольких ступеней искания, то состояния этих ступеней не являются независимыми. Кроме того, из-за потерь на ступенях искания меняется характер потока вызовов, поэтому ф-ла (10.3) является приближенной. В большинстве практических случаев рi0,01 (i=l, 2,..., n) и без большой погрешности выражение (10.3) можно заменить следующей простой формулой:

так как члены, содержащие произведения, в этом случае пренебрежимо малы. В соответствии с (10.4) результирующие потери равны сумме потерь на всех ступенях искания, поэтому потери р называют суммарными потерями.

Из предыдущих глав известно, что с уменьшением потерь (по-вышением качества обслуживания) увеличивается объем станционных и линейных сооружений, а следовательно, и затраты на построение сети. Емкости пучков линий (каналов) и их протяженность существенно различаются на междугородной, внутризоновых, городских и сельских телефонных сетях. На любой сети затраты на построение отдельных участков соединительного тракта также могут значительно различаться. Для снижения суммарных затрат на построение телефонных сетей нормируется тем большая величина суммарных потерь на сети, чем больше протяженность пучков линий (каналов) и меньше их емкости. По этим соображениям минимальная норма суммарных потерь принята на городских телефонных сетях и большая – на сельских телефонных сетях, на которых преобладают пучки соединительных линий малой емкости. В пределах одной сети суммарные потери распределяются по ступеням искания таким образом, что на более дорогие участки соединительного тракта отводится большая величина потерь.

Нормы потерь при городской телефонной связи. Суммарные потери при установлении соединения между двумя телефонными аппаратами одной ГТС не должны превышать 0,02– 0,03;

при связи между телефонными аппаратами ГТС и телефонным аппаратом пригородной зоны, на которой приняты нормы потерь ГТС, – 0,04. Величина потерь на участках между входами соседних ступеней ГИ, а также между входами последней ступени ГИ и ЛИ (АИ) не должна превышать 0,005;

на участке IГИ–IIГИ узла специальных служб –0,001.

Нормы потерь при сельской телефонной связи. Суммарные потери при установлении соединений между двумя телефонными аппаратами одной СТС не должны превышать 0,035– 0,11. Потери при расчете количества соединительных линий на участках оконечная станция (ОС) – центральная станция (ЦС), оконечная станция – узловая станция (УС) не должны превышать 0,02– 0,03;

на участке УС–ЦС–0,01. Потери между входами соседних ступеней ГИ, а также между входами последней ступени ГИ и ЛИ (АИ) АТС не должны превышать 0,005;

на участке IГИ–IIГИ специальных служб – 0,001.

Нормы потерь при зоновой телефонной связи. Суммарные потери при установлении соединений между двумя телефонными аппаратами разных местных сетей одной зоновой телефонной сети (ЗТС) не должны превышать 0,03–0,125. Нормы потерь на участках соединительного тракта ЗТС приведены в табл. 10.1.

ТАБЛИЦА 10. Нормы потерь на участках соединительного тракта ЗТС Участок Города, где Выделенные расположен Райцентры города ы АМТС IГИ– АМТС 0,005 0,01 0, АМТС– РАТС (УВСМ) 0,002 – 0, АМТС– ЦС – 0,01 – Между входами соседних ступеней ГИМ 0,001 0,001 0, Нормы потерь при междугородной телефонной связи. Суммарные потери при установлении соединений между двумя телефонными аппаратами ГТС, расположенных в разных зонах семизначной нумерации, не должны превышать 0,1. Количество каналов на одном участке пути последнего выбора должно рассчитываться при величине потерь 0,01.

Вероятность потерь в коммутационной системе станций типов АМТС-4, АРМ-20, АМТС-КЭ, УАК-КЭ не должна превышать 0,003;

АМТС-2 и АМТС-3 – 0,007. Нормы потерь на участках телефонный аппарат – АМТС и АМТС – телефонный аппарат такие же, как при зоновой телефонной связи.

10.2. Расчет нагрузок на входах и выходах ступеней искания коммутационных узлов Для каждой ступени искания АТС или узла расчет интенсивности поступающей на входы и выходы нагрузки производится раздельно, так как при этом необходимо учитывать перераспределение потоков нагрузки по направлениям разных ступеней искания, потери сообщения и различие в значениях средней длительности занятия на этих ступенях искания.

Расчеты нагрузок по ступеням искания рассмотрим на примере координатных телефонных станций АТСК.

Интенсивность нагрузки, поступающей на ступень абонентского искания. Во входы ступени АИ координатных АТС могут включаться линии от квартирных телефонных аппаратов индивидуального пользования, коллективного пользования или спаренных, телефонных аппаратов народнохозяйственного сектора, таксофонов с интенсивностью удельной исходящей нагрузки менее 0,33 Эрл, соединительные линии от учрежденческих телефонных станций (УТС) малой емкости. Среднее число вызовов и средняя продолжительность разговора у этих источников нагрузки неодинаковы. Интенсивность нагрузки, создаваемой абонентами квартирного сектора, достигает максимального значения в вечерние часы суток, а народнохозяйственного сектора – в утренние часы. По этим причинам для определения максимальной суммарной нагрузки, поступающей от источников разных категорий, расчеты следует проводить как для утреннего, так и для вечернего ЧНН.

Интенсивность исходящей нагрузки, обслуживаемой ступенью АИ в ЧНН, представляет собой сумму интенсивностей нагрузок, поступающих по всем линиям, включенным в ступень:

где ni – число источников i-й категории;

аi – среднее значение интенсивности удельной исходящей нагрузки i й категории источников в ЧНН;

исхj – число исходящих соединительных линий от j-й УТС;

aj – среднее значение интенсивности нагрузки, поступающей на ступень АИ по одной соединительной линии от j-й УТС в ЧНН. Среднее значение интенсивности удельной исходящей нагрузки источников i-й категории аi определяется как произведение среднего числа вызовов в единицу времени от одного источника i-й категории ci на среднюю длительность одного занятия для источника i-й категории ti.

Расчет объема оборудования осуществляется по максимальному из значений интенсивности нагрузки в утренний и вечерний ЧНН.

Интенсивность нагрузок на ступенях группового искания. Нагрузка, поступающая на входы первой ступени группового искания IГИ АТСК, создается абонентскими группами ступени АИ, абонентами УТС и подстанций (ПС), исходящие соединительные линии от которых включены во входы ступени IГИ, а также абонентами таксофонов, линии от которых включены непосредственно во входы IГИ (рис.

10.2). Нагрузка от абонентских групп ступени АИ и от остальных источников, обслуживаемых ступенью IГИ, распределяется по возможности равномерно между всеми блоками ступени.

Средняя величина интенсивности нагрузки, поступающей на входы ступени IГИ, рассчитывается в утренний и вечерний ЧНН по формуле где yт – интенсивность нагрузки, поступающей от таксофонов;

yУТС(ПС)k – интенсивность нагрузки, поступающей от k-й УТС (ПС);

рАИ – потери на ступени АИ.

Нагрузка на выходах ступени IГИ меньше нагрузки, поступающей на ее входы, так как время занятия выхода ступени IГИ меньше времени занятия ее входа на величину, включающую в себя время слушания сигнала ответа станции tc.o и время набора знаков номера вызываемого абонента – tн.н. При связи с координатными АТСК регистр принимает все т знаков абонентского номера, а затем устанавливается соединение на ступени IГИ. При связи со станциями декадно-шаговой системы соединение устанавливается после приема т знаков, определяющих код АТС или узла. Среднее время приема регистром знаков набора номера вычисляется с учетом распределения нагрузки между АТС координатной и декадно шаговой систем по формуле где 1,5 – время набора одного знака номера, с;

рi – доля нагрузки от проектируемой АТС к i-й станции координатной системы. Так как до вычисления нагрузки на выходах ступени IГИ значения pi могут быть неизвестны, то в первом приближении pi можно заменить отношением возникающей на i-й АТС координатной системы нагрузки к суммарной возникающей нагрузке на всех АТС проектируемой сети.

Среднее время занятия выхода ступени IГИ Средняя длительность занятия входа ступени IГИ – tвх IГИ – определяется как средневзвешенная из длительностей занятия входов источниками разных категорий:

Нагрузка на выходах ступени IГИ рассчитывается в утренний и вечерний ЧНН по формуле где рIГИ– потери на ступени IГИ.

При расчете нагрузки на выходах входящей ступени ГИ (ВГИ) следует учитывать, что длительность занятия входов блоков ВГИ, обслуживающих входящее сообщение от АТС декадно-шаговой системы, больше длительности занятия выходов на время приема входящим регистром (ВРД) необходимой информации.

Продолжительность занятия выходов по сравнению с продолжительностью занятия входов на других ступенях ГИ уменьшается на время действия маркера в процессе установления соединения (tМГИ =0,61,0 с). Обычно принимают, что нагрузка на выходы составляет 0, величины нагрузки на входы.

Нагрузка, поступающая на ступень АИ, распределяется между абонентскими группами пропорционально той части исходящей от них нагрузки, которая создается источниками двустороннего действия.

Интенсивности нагрузки на входах и выходах всех ступеней искания рассчитываются в утренний и вечерний ЧНН. Расчет объема оборудования производится по максимальному значению интенсивности нагрузки.

10.3. Расчет нагрузок, поступающих на регистры и маркеры Отдельные группы (пучки) абонентских регистров (АР) обслуживают вызовы, поступающие от тысячных или двухтысячных абонентских групп. Интенсивность нагрузки, поступающей на АР i-й группы – yAPI,- – определяется по формуле где tАР – среднее время обслуживания абонентским регистром одного вызова;

tвх IГИ – среднее время занятия одним вызовом входа IГИ;

yвх IГИi – интенсивность суммарной нагрузки, поступающей на входы IГИ от всех абонентских групп, обслуживаемых i-й группой регистров.

Интенсивность нагрузки, поступающей на входящие регистры ВРД, – yВРД – определяется из выражения где tВРД – среднее время обслуживания входящим регистром одного вызова;

tСЛ – среднее время занятия одним вызовом соединительной линии от АТС декадно-шаговой системы;

уСЛ – интенсивность нагрузки, обслуженной соединительными линиями, к которым подключается группа ВРД.

Нагрузка на маркеры блоков ступеней искания определяется с целью проверки среднего времени ожидания подключения маркеров при установлении соединений. Интенсивность нагрузки, поступающей на маркер коммутационного блока, определяется по формуле где tм – среднее время обслуживания маркером одного вызова;

tвх.бл – среднее время занятия входа коммутационного блока одним вызовом;

yвх.бл – интенсивность нагрузки, поступающей на все входы коммутационного блока.

Интенсивность нагрузки, поступающей на регистры и маркеры, рассчитывается в утренний и вечерний ЧНН.

10.4. Способы распределения нагрузки Определение и способ задания потоков нагрузки. Телефонные сети представляют собой, как правило, совокупность телефонных станций, соединенных пучками межстанционных линий или каналов. Пучком линий называется совокупность линий, обслуживающих нагрузку, поступающую от определенной группы источников нагрузки к определенной группе приемников этой нагрузки.

Потоком поступающей или обслуженной нагрузки называется нагрузка, поступающая на линии или обслуженная линиями одного пучка.

Величины потоков телефонной нагрузки полностью определяются взаимной заинтересованностью в телефонной связи абонентов разных станций. Поэтому при проектировании АТС точно установить величины межстанционных потоков нагрузки невозможно. Это можно сделать только после введения АТС в действие путем специальных наблюдений за потоками нагрузки.

Пусть наблюдения за интенсивностями потоков нагрузки осуществляются периодами до 15 мин (см. парагр. 3.2). Временные положения промежутков продолжительностью в 1 ч, начинающихся со сдвигом в 15 мин, обозначим моментами времени t1, t2,..., tr, расположенными в середине каждого из промежутков. Средние значения интенсивностей нагрузки от АТС, к ATCj в эти промежутки времени обозначим вектором Пусть на направлении ij ЧНН приходится на k-й промежуток времени. Интенсивность нагрузки в ЧНН обозначим y*ij(tk).

При m АТС на сети интенсивности межстанционных потоков нагрузки полностью характеризуются квадратной матрицей векторов На телефонных сетях имеют место объединение и разделение потоков нагрузки. При рассмотрении этих явлений пользуются понятиями исходящей и входящей нагрузок.

Разделение потоков. Под исходящей от ATCi нагрузкой понимается сумма потоков нагрузки, исходящих от АТСi ко всем АТС сети. Вектор интенсивностей исходящей от АТС, нагрузки определится как сумма элементов i-й строки матрицы (10.15):

По правилу сложения векторов выражение (10.16) с учетом (10.14) можно записать в следующем виде:

Интенсивность исходящей нагрузки в ЧНН определяется из выражения В частном случае при совпадении временных положений ЧНН на направлениях межстанционной связи ij (j=1, 2,..., т).

При этом имеет место соотношение Очевидность этого соотношения иллюстрируется простейшим примером суммирования интенсивностей двух потоков с несовпадающими ЧНН (рис. 10.3).

Объединение потоков. Под входящей на ATCj нагрузкой понимается сумма потоков нагрузки, входящих на ATCj от всех АТС сети. Вектор интенсивностей входящей на ATCj нагрузки определится как сумма элементов j-го столбца матрицы (10.15) По аналогии с (10.17) Интенсивность входящей нагрузки в ЧНН определяется из выражения При совпадении временных положений ЧНН на направлениях ij (i=1, 2,..., m) По аналогии с (10.20) имеет место соотношение Из (10.19) и (10.24) следует, что при объединении и разделении потоков нагрузки в условиях совпадения временных положений ЧНН на всех направлениях межстанционной связи ij (i, j=1, 2,..., m) интенсивности результирующих потоков в ЧНН однозначно определяются через интенсивности в ЧНН составляющих их потоков, т. е. вместо матрицы векторов (10.15) достаточно иметь квадратную матрицу скаляров ||у*ij(tk)||.

Далее в тех случаях, когда интенсивности всех межстанционных потоков нагрузки рассматриваются в один и тот же временной интервал для простоты обозначений вместо yij(tk) будем писать yij.

При условии совпадения временных положений ЧНН на всех направлениях межстанционной связи ij (i, j=1, 2,..., m) интенсивность суммарной нагрузки в ЧНН, исходящей от всех АТС сети, определится из выражения а интенсивность суммарной нагрузки в ЧНН, входящей на все АТС сети, из выражения Из сравнений (10.26) и (10.27) следует т. е. интенсивность суммарной нагрузки, исходящей от всех АТС сети, равна интенсивности суммарной нагрузки, входящей на все АТС сети.

Некоторые закономерности формирования потоков нагрузки.

Закономерности формирования потоков нагрузки могут быть выяснены только путем постановки наблюдений на действующих сетях. Наблюдениями установлено, что временное положение ЧНН на направлении ij существенным образом зависит от структурного состава абонентов АТС, и ATCj. Если эти АТС обслуживают преимущественно абонентов квартирного сектора, то имеет место вечерний ЧНН, если народнохозяйственного сектора, то утренний ЧНН. При прочих равных условиях величины интенсивностей потоков нагрузки в ЧНН у*ij(i, j=1, 2,..., r) тем больше, чем территориально ближе расположены абоненты ATСi к абонентам ATCj. В частности, величина интенсивности внутристанционной нагрузки ATCj у*ij при прочих равных условиях обычно бывает больше интенсивностей потоков нагрузки к другим АТС сети.

Анализ закономерностей формирования абсолютных значений потоков нагрузки обычно выполнять достаточно сложно, так как емкость сети во времени не остается постоянной, АТС различаются емкостью и структурным составом абонентов. Поэтому часто используются отношения интенсивностей нагрузки на направлениях межстанционной связи к интенсивности нагрузки, исходящей от АТС:

Эти отношения называют коэффициентами распределения нагрузки. Очевидно выполнение следующего условия:

При известных значениях коэффициентов распределения интенсивности потоков нагрузки определяются из выражения Величина коэффициента распределения kij тем больше, чем больше отношение интенсивности исходящей от ATCj нагрузки к интенсивности суммарной исходящей от всех АТС сети нагрузки:

На рис. 10.4 в качестве примера приведена зависимость kij=f(i), построенная по данным норм технологического проектирования. Коэффициент распределения от ATСi к АТСi kij называют коэффициентом внутристанционного сообщения.

Для проектирования матрицы интенсивностей потоков нагрузки (10.15) в общем случае необходимо задать строку векторов Yисх i(i=1, 2,..., m) и матрицу векторов Трудность прогнозирования коэффициентов kij состоит в том, что их значения, кроме j, зависят еще от целого ряда факторов, которые определяют взаимное телефонное тяготение абонентов ATСi к абонентам ATCj.

Количественной оценкой телефонного тяготения являются коэффициенты тяготения. При равномерном телефонном тяготении между абонентами всей сети интенсивность нагрузки от АТС, к ATCj y'ij (i, j=1, 2,..., m) пропорциональна доле интенсивности нагрузки, исходящей от ATCj, в суммарной интенсивности нагрузки, исходящей от всех АТС сети:

Наблюдениями на действующих сетях установлено, что это равенство обычно не выполняется, так как тяготение между абонентами разных АТС является неравномерным.

Если в левую часть выражения (10.33) подставить фактическое значение нагрузки yij, то для выполнения равенства правую часть этого выражения необходимо умножить на коэффициент тяготения fij:

Из (10.33) и (10.34) следует, что Коэффициент тяготения fij абонентов АТСi к абонентам ATСj представляет собой отношение фактического значения интенсивности нагрузки от ATCi к ATCj к тому значению интенсивности нагрузки, которое было бы между этими станциями при равномерном телефонном тяготении на сети. При равномерном тяготении fij = 1 (i, j=1, 2,...,т).

Значения коэффициентов тяготения можно рассчитать только для действующих станций.

Для проектируемых АТС их значения прогнозируются на основании анализа закономерностей распределения нагрузки на действующих сетях.

Пусть для всех станций сети в результате прогноза определены значения интенсивностей исходящих нагрузок Yисxi (i=1, 2,..., т) и матрица векторов коэффициентов тяготения ||fij||.

Требуется рассчитать матрицу векторов межстанционных потоков нагрузки ||Yij||.

Значения интенсивностей межстанционных потоков нагрузки в каждый фиксированный временной интервал рассчитываются по (10.34). Проверкой правильности распределения уисхi является выполнение равенства Если это равенство не выполняется, то вычисленные значения yij умножаются на выравнивающий коэффициент:

Трудность прогнозирования матрицы ||fij|| заключается в сложной зависимости изменения значений коэффициентов fij с ростом емкости телефонной сети. Эта зависимость является более простой для так называемых нормированных коэффициентов тяготения.

Будем распределять интенсивность исходящей от АТСi нагрузки yисхi пропорционально условным исходящим нагрузкам АТС сети. Под условной исходящей нагрузкой ATCj понимается произведение фактического значения исходящей нагрузки yисхj на коэффициент пij, характеризующий телефонное тяготение абонентов ATCi к абонентам ATCj. В соответствии с правилом пропорционального деления получаем Сравнивая (10.38) с (10.34), можем записать откуда Правая часть выражения (10.40) от j не зависит, следовательно, для фиксированного i принимая nii=1, получим Значения коэффициентов тяготения существенным образом зависят от расстояния между абонентами. На рис. 10.5 в качестве примера приведена усредненная зависимость значений нормированных коэффициентов тяготения от кратчайшего расстояния между АТС для телефонной сети, построенной без узлов. Аналитически кривая рис. 10.5 может быть аппроксимирована уравнением вида где значения постоянных коэффициентов а, b, с зависят от емкости телефонной сети и других факторов. Пусть для всех станций сети в результате прогноза определены значения интенсивностей исходящих нагрузок Yисхi (i=1, 2,..., т) и матрица нормированных коэффициентов тяготения ||nij||.

Требуется рассчитать матрицу межстанционных потоков нагрузки ||Yij||.

Значения интенсивностей межстанционных потоков нагрузки в каждый фиксированный временной интервал рассчитываются по (10.38).

Кроме коэффициентов fij и пij в литературе описаны и другие коэффициенты для учета тяготения между абонентами. Однако какие бы коэффициенты не применялись, прогнозирование их значений может осуществляться только на основе наблюдений за их значениями на действующих сетях.

10.5. Колебания нагрузки. Расчетная интенсивность нагрузки Наблюдениями установлено, что интенсивность нагрузки, создаваемой группой источников, колеблется по ЧНН разных дней. Так как зависимость вероятности потерь от интенсивности нагрузки имеет явно выраженный нелинейный характер, то в области малых значений потерь увеличение поступающей нагрузки на несколько процентов может привести к возрастанию потерь в несколько раз. Поэтому при расчете объема оборудования необходимо учитывать колебания интенсивности нагрузки. Закон колебаний с хорошим приближением аппроксимируется нормальным распределением. При этом вероятность отклонения нагрузки в произвольно взятый ЧНН yi, от математического ожидания нагрузки в ЧНН у определяется из выражения где (у) – среднеквадратическое отклонение интенсивности нагрузки в ЧНН;

Ф(z) – нормированная функция Лапласа;

z – аргумент функции Лапласа.

Из (10.44) следует, что при расчете объема оборудования с нормированными потерями р по математическому ожиданию нагрузки у потери будут меньше или равны р только с вероятностью 0,5, т. е. в 50% всех ЧНН. Если потребовать выполнения заданного качества обслуживания с большей вероятностью, то расчет объема оборудования следует выполнять не по математическому ожиданию интенсивности нагрузки, а по расчетной интенсивности нагрузки:

Для простейшего потока вызовов математическое ожидание интенсивности нагрузки равно дисперсии нагрузки. Полагая a( y) = y, получим следующее выражение для расчетной интенсивности нагрузки:

Чем больше в выражении (10.46) значение аргумента z функции Лапласа, тем с большей вероятностью гарантируется нормированное качество обслуживания, однако при этом возрастает объем оборудования. В практике проектирования ГТС значение коэффициента z принимается равным 0,6742. При этом норма потерь р=0,005 выполняется с вероятностью 0,75, а с вероятностью 0,9 потери не превысят 0,02, что для городской телефонной связи считается вполне приемлемым качеством обслуживания. Таким образом, формула расчетной нагрузки имеет следующий вид:

Переход от расчетного значения к математическому ожиданию нагрузки осуществляется по формуле Из (10.47) видно, что величина расчетной нагрузки нелинейно возрастает с увеличением математического ожидания: чем больше математическое ожидание, тем меньше отношение =yp/y. Например, при y=l Эрл величина ур=1,674 Эрл и =1,674, а при у=100 Эрл расчетная нагрузка yр= 106,7 Эрл и =1,067. Такая зависимость отражает физическую сущность колебаний нагрузки в группах различной емкости. В группах большой емкости меньше сказывается разброс нагрузок, создаваемых каждым источником, и как следствие – меньше колебания суммарной средней нагрузки в ряду таких групп.

Величина расчетной нагрузки зависит не только от ее математического ожидания, но и от способа объединения выходов коммутационной системы, на которые поступает нагрузка.

При неполнодоступном включении нагрузка на линии в определенном направлении поступает с отдельных нагрузочных групп. Чем больше число нагрузочных групп при прочих равных условиях, тем меньше величина нагрузки отдельной нагрузочной группы и выше ее колеблемость. Поэтому при неполнодоступном включении расчетная величина нагрузки на направлении должна быть принята более высокой, чем при полнодоступном включении линий. Легко показать, что расчетная нагрузка, поступающая на неполнодоступный пучок линий, yр. нп заключена в следующих пределах:

Нижняя граница неравенства yp1 соответствует расчетной нагрузке полнодоступного пучка, обслуживающего суммарную нагрузку всех нагрузочных групп (все нагрузочные группы объединяются в одну нагрузочную группу, коэффициент уплотнения =g). Верхняя граница неравенства yр2 соответствует сумме расчетных нагрузок обособленных полнодоступных пучков (коэффициент уплотнения =1).

Кроме коэффициента уплотнения неполнодоступного включения и математического ожидания нагрузки у значения расчетной нагрузки yр.нп зависят от структуры коммутационной системы, доступности d, величины потерь р. На рис. 10.6 в качестве примера представлены зависимости коэффициента =ур. нп/у от емкости равномерного неполнодоступного пучка линий v при различных значениях коэффициента уплотнения у (кривые 2, 3, 4);

для сравнения дана зависимость коэффициента е от v для полнодоступных пучков той же емкости (кривая 1).

Приведенные зависимости получены для схем неполнодоступного включения ступени ГИ АТСК, построенной из двухзвеньевых блоков при доступности mq=20, потерях р=0,005 и нагрузке на вход а=0,4 Эрл.

Как и следовало ожидать, с увеличением значение уменьшается во всем диапазоне емкостей пучков линий.

Значения коэффициентов для других значений доступности и потерь приведены в [14]. При объединении и разделении потоков нагрузки на различных ступенях искания телефонных сетей величины расчетных нагрузок должны определяться в следующей последовательности. В случае объединения потоков нагрузки необходимо найти математическое ожидание суммарной нагрузки как сумму математических ожиданий объединяемых нагрузок, а затем перейти к расчетному значению нагрузки для определения числа устройств, обслуживающих суммарную нагрузку. При разделении на выходах ступени искания общей нагрузки по направлениям следует определить математическое ожидание нагрузки данного направления как долю математического ожидания суммарной нагрузки, а затем найти расчетное значение.

Задача 10.1.

Задано: интенсивность нагрузки, поступающей на проектируемую АТСК1 в утренний и вечерний ЧНН: y1y= 504,6 Эрл;

y1В= 475,4 Эрл. Вся нагрузка, поступающая от абонентов проектируемой АТСК, распределяется между четырьмя АТС сети (включая и проектируемую). Интенсивности исходящих нагрузок от всех АТС сети в утренний и вечерний ЧНН приведены в табл. 10.2.

ТАБЛИЦА 10. Величина нагрузки, Эрл, для АТС с индексом Параметр 1 2 3 yiy 504,6 403 554 yiв 475,4 605 275 Нормированные коэффициенты тяготения в утренний и вечерний ЧНН от проектируемой ATd ко всем АТС сети:

n11у=1;

n12y=0,53;

n13y=0,71;

n14у=0,42;

n11в=1;

n12в=0,69;

n13в=0,4;

n14в=0,45.

Необходимо рассчитать интенсивности межетанщиомных потакав иапрузки для расчета числа соединительных линий.

Решение. Интенсивности межстанционных потоков в утренний и вечерний ЧНН рассчитываются по (10.38):

Так как расчет числа соединительных линий осуществляется по максимальной интенсивности нагрузки, то искомыми интенсивностями будут:

у11y=200,7 Эрл;

y12y=161,2 Эрл;

y13y=156,1 Эрл;

y14в=88,2 Эрл.

Задача 10.2.

Задано: на коммутационную систему по четырем направлениям поступают нагрузки, расчетные интенсивности которых равны:

yp1 вх=10 Эрл;

yp2 вх=15 Эрл;

yp3 вх=20 Эрл;

yp4 вх=25 Эрл.

В коммутационной системе эти нагрузки перераспределяются по трем направлениям пропорционально коэффициентам k1=0,25;

k2=0,35;

k3=0,4. Требуется определить расчетные интенсивности нагрузок в трех направлениях, включенных в выходы коммутационной системы.

Решение. По ф-ле (10.48) (рассчитываем по заданным величинам yp. вх соответствующие им математические ожидания напрузок:

y1 вх=8,076 Эрл;

y2 вх=12,513 Эрл;

y3 вх=17,257 Эрл;

y4 вх=21,768 Эрл.

Суммарная средняя нагрузка, поступающая на входы коммутационной системы, равна yВХ = yi = 59,614 Эрл.

i= Средняя величина нагрузки на выходах ступени ГИ yвых=0,99yвх=0,9959,614=59 Эрл. Она распределяется по трем направлениям:

y1 вых=k1yвых=0,2559=14,75 Эрл;

y2 вых=20,65 Эрл;

y3 вых=23,6 Эрл.

По ф-ле (10.47) рассчитываются расчетные интенсивности потоков нагрузки: yp1 вых=17,34 Эрл;

yp2 вых=23, Эрл;

yp3 вых=26,87 Эрл.

Контрольные вопросы 1. В каких пределах заключена результирующая величина потерь в сложной коммутационной системе, содержащей п ступеней искания?

2. Запишите выражения для результирующей величины потерь в сложной коммутационной системе с п последовательно включенными ступенями искания.

3. Назовите нормы суммарных потерь при городской, сельской, зоновой и междугородной телефонной связи.

4. В каких случаях потоки межстанционной нагрузки достаточно характеризовать только.интенсивностями нагрузки в ЧНН?

5. Поясните способ распределения нагрузки с помощью коэффициентов распределения.

6. Поясните физический смысл коэффициентов тяготения fij.

7. Что такое выравнивающий коэффициент?

8. С какой вероятностью гарантируется норма потерь при расчете объема оборудования по математическому ожиданию интенсивности нагрузки и расчетной интенсивности нагрузки?

9. Запишите и поясните формулу для вычисления расчетной нагрузки.

Pages:     | 1 | 2 || 4 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.