WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     || 2 |
-- [ Страница 1 ] --

Институт проблем управления им. В.А. Трапезникова Е.В. Колосова, Д.А. Новиков, А.В. Цветков МЕТОДИКА ОСВОЕННОГО ОБЪЕМА В ОПЕРАТИВНОМ УПРАВЛЕНИИ ПРОЕКТАМИ Москва - 2000 УДК 336 ББК 65.050.9(2) К 61

Колосова Е.В., Новиков Д.А., Цветков А.В.

К 61 Методика освоенного объема в оперативном управлении проектами. М.: ООО «НИЦ «Апост роф», 2000. – 156 с.

ISBN 5-94155-007-3 Настоящая работа содержит описание методики освоенного объема – совокупности методов управления проектами, использующих показатели освоенного объема, и механизмов принятия оперативных управленческих решений. Значительное внимание уделяется изучению практически важ ных случаев использования методики освоенного объема в рамках суще ствующих программных средств по управлению проектами.

Работа рассчитана как на специалистов-теоретиков по управлению сложными системами, так и на руководителей проектов.

Рецезент: д.т.н., проф. А.Д. Цвиркун УДК 336 ББК 65.050.9(2) К 61 ISBN 5-94155-007- Колосова Е.В., Новиков Д.А., Цветков А.В., СОДЕРЖАНИЕ Введение…………………………………..…………………..… Глава 1. Показатели освоенного объема в оперативном управлении проектами……….…………………….. 1.1. Модель проекта и показатели освоенного объема……….…… 1.2. Общая постановка задачи оперативного управления проектом…………………………………….. 1.3. Планирование и оперативное управление проектом в условиях полной информированности………….…..… 1.4. Методы агрегирования показателей освоенного объема………………………………..……… Глава 2. Механизмы оперативного управления проектами.. 2.1. Механизмы нечеткой активной экспертизы…………….. 2.2. Механизмы стимулирования…………………………..… 2.3. Механизмы планирования……………………………….. Глава 3. Прикладная методика освоенного объема……….. Литература…………………………………………..……….. ВВЕДЕНИЕ В настоящей работе принято иерархическое описание органи зационной структуры проекта, основным (базовым) элементом которой являются два участника проекта – управляющий орган (центр в терминологии теории активных систем (АС) [22, 78], руководитель проекта или проект-менеджер в терминологии управ ления проектами [36, 58, 93, 94]) и управляемый субъект (активный элемент (АЭ) или элемент в терминологии теории активных систем, исполнитель или агент в терминах управления проектами). При этом управляющий орган осуществляет функции планирования, контроля и оперативного управления, а деятельность управляемого субъекта заключается в осуществлении набора действий (выполне нии работ), направленных на реализацию проекта. Деятельность управляемого субъекта описывается показателями реализации проекта – объем работ, ресурсы и затраты, зависящими от времени и однозначно характеризующими в каждый момент времени со стояние проекта.

Различия между плановыми и текущими показателями реали зации проекта1 являются важнейшими характеристиками, на осно вании которых принимаются решения по оперативному управле нию.

Традиционно основным показателем динамики затрат2 счита лась и считается зависящая от времени3 разность (t) = c0(t) – c(t) В настоящем обзоре теоретических и практических результатов исследования и внедрения методики освоенного объема мы, следуя исполь зуемому зарубежными авторами описанию проекта, будем считать, что реализация проекта однозначно задается показателями затрат (исклю чение – [106], в работах отечественных авторов прикладная методика освоенного объема практически не рассматривалась, исключение состав ляют работы, содержащие методологические основы теории стратеги ческого и оперативного планирования и управления – [3, 5, 10, 11, 31, 65 68, 72, 84, 87-89, 91, 92, 100, 101, 146, 150]).

Обзор методов управления проектами (в том числе – управления за тратами на проект, то есть раздела, к которому традиционно относят методику освоенного объема) можно найти в [36, 93, 94, 109 и др.].

Если не оговорено особо, то будем считать, что проект начинается в момент t = 0.

между плановыми затратами1 (Budgeted Cost of Work Scheduled BCWS) c0(t) (объемом средств, которые планировалось потратить к моменту времени t) и фактическими затратами c(t) (Actual Cost of Work Performed - ACWP) - фактическим объемом потраченных средств) [1, 26, 55, 102, 122]. Положительность величины (t) означает, во-первых, что фактические затраты отстают от плано вых, что может быть вызвано внешними (с точки зрения рассмат риваемого проекта) причинами, например, задержками в финанси ровании и т.д., то есть нехваткой средств;

а, во-вторых, что имеет место задержка в выполнении работ, что в конечном счете может привести к задержке завершения проекта в целом.

Однако, величины (t) оказывается недостаточно для вынесе ния обоснованных суждений2, например, о возможных сроках завершения проекта, так как реальное состояние проекта характе ризуется не только фактическими затратами (ACWP), но и освоен ными затратами (Budgeted Cost of Work Performed - BCWP) ce(t), называемые иногда в литературе освоенным объемом (Earned Value - EV), которые могут по тем или иным внутренним (с точки зрения рассматриваемого проекта) причинам оказаться отличными от фактических затрат. Величина (t) = c0(t) – ce(t) при этом будет характеризовать отставание от плана, а величина (t) = c(t) – ce(t) – e перерасход средств.

Впервые «трехмерная» характеристика работ: «что планирова лось затратить – что затрачено – что сделано» начала применяться на производстве инженерами в конце 19-го века [156]. В конце 50-х годов появились сетевые модели (в том числе, в 1958 г. PERT – Program Evaluation Review Technique), основывающиеся на методе критического пути и позволяющие определять оптимальную с точки зрения времени завершения проекта последовательность выполнения составляющих его операций и основывающиеся на методе критического пути. В 1962 году появилась методика PERT/Cost, учитывающая не только временные, но и затратные характеристики, поэтому можно условно датировать появление Здесь и далее по тексту под затратами понимаются суммарные (куму лятивные) затраты.

Подробное сравнение методики освоенного объема с традиционными методами управления затратами приводится в [122, 157-161].

методики освоенного объема именно 1962 годом. В системе стан дартов Министерства Обороны США C/SCSC (Cost/Schedule Con trol Systems Criteria – затратно-временные системные критерии управления), внедренной в 1967 г., использование методики осво енного объема является обязательным требованием для проектов, выполняемых по заказу Министерства Обороны [112-114, 122]. В 1986 году число критериев было сокращено, тем не менее они используются в основном в государственных контрактах: громозд кость описания, сложность применения и т.д. (см. критику в [121]) приводят к тому, что 99% коммерческих проектов не используют C/SCSC. Более широкое распространение, в том числе и в коммер ческих проектах, получила упрощенная методика освоенного объе ма, описываемая ниже.

Изложение материала настоящего «обзора»1 имеет следующую структуру. Сначала рассматриваются агрегированные показатели выполнения проекта (основные показатели освоенного объема).

Затем приводится «алгоритм», отражающий последовательность действий при использовании методики освоенного объема, обсуж даются известные методы агрегирования показателей реализации операций и, наконец, описываются методы прогнозирования ре зультатов реализации проекта с использованием наблюдаемых показателей освоенного объема.

Показатели освоенного объема [108, 122-130, 137, 139, 140, 153].

Рассмотрим элементарный проект, то есть проект, состоящий из одной операции2. Эскиз графика динамики затрат приведен на На сегодняшний день опубликовано несколько сот научных работ (ис ключая отчеты по реализации конкретных проектов и описаний частных случаев (case-studies)), посвященных методике освоенного объема. Боль шую их часть (около двухсот) составляют статьи в международном журнале управления проектами (International Journal of Project Manage ment) и материалах (PM Network) Международного Института Управле ния Проектами (IPM Institute). В последнее время наблюдается значи тельный рост числа публикаций по освоенному объему. Так, например, в международном журнале управления проектами до 1993 года вышло всего восемь статей по этой тематике [112].

Естественно, такие проекты не встречаются на практике, однако подобное упрощенное модельное представление удобно использовать для агрегированного описания сложного проекта.

рисунке 1 (S-образный вид кривой обусловлен различными темпа ми работ в начале, середине и окончании проекта [58, 69, 90, 93 95]).

затраты C C c0(t) c(t) ce(t) время t (t) 0 T T (t) Рис. 1. Плановые, фактические и освоенные затраты на проект Перечислим основные переменные, по которым описывается каждая операция и проект в целом («основные показатели освоен ного объема1») (см. рис.1):

C0 – планируемые суммарные затраты на проект (BAC – Budget At Completion или BC – Budget Cost);

T0 – планируемый срок завершения проекта;

c0(t) – планируемая динамика затрат (BCWS – Budgeted Cost of Work Scheduled) – директивный график;

c(t) – фактическая динамика затрат (ACWP – Actual Cost of Work Performed);

ce(t) – динамика освоенных затрат (BCWP – Budgeted Cost of Work Performed или EV – Earned Value);

T – фактический срок окончания проекта;

Альтернативная система показателей (не получившая в дальнейшем распространения) предлагалась в [120].

C – фактические суммарные затраты на проект (EAC – Estimate At Completion).

Производные показатели освоенного объема:

(t) = c0(t) – c(t) - разность между плановыми и фактическими затратами;

(t) = c0(t) – ce(t) - разность между плановыми и освоенными затратами;

(t) = c(t) – ce(t) 0 – разность между фактическими и освоен e ными затратами (Cost Overrun – «перерасход» средств);

(t) = ce(t) / c0(t) – показатель освоенного объема (SPI – Sched ule Performance Index);

(t) = ce(t) / c(t) – показатель динамики (освоения) затрат (CPI – Cost Performance Index).

Итак, мы перечислили показатели, описывающие проект, со стоящий из одной операции. Если проект состоит из нескольких операций, то возникает вопрос о том, как агрегировать показатели подпроектов, операций и т.д. Важную роль при этом играет струк тура декомпозиции работ (WBS – Work Breakdown Structure – дерево работ, в котором проект последовательно разбивается на более мелкие составляющие) и план контроля затрат (CAP – Cost Account Plan) – совокупность процедур определения стоимостей элементов структуры декомпозиции работ и правил их агрегирова ния) [122, 123].

Алгоритм, отражающий последовательность действий при применении методики освоенного объема (см. также раздел «При кладная методика освоенного объема») заключается в следующем (пункты 1-5 соответствуют фазе планирования (до начала реализа ции проекта), пункты 6-10 – фазе контроля и оперативного управ ления) [122]:

1. Определение объема работ (при использовании показателей освоенного объема определение того, что понимается под 100% работ, играет ключевую роль). На этом этапе необходима детализа ция структуры декомпозиции работ.

2. Создание иерархической структуры проекта (в том числе – выделение на нижнем уровне измеримых с точки зрения затрат, Полностью общие требования системы стандартов C/SCSC приведены в [122].

степени выполнения, сроков и т.д. ячеек – начальный этап разра ботки плана контроля затрат).

3. Планирование на уровне отдельных ячеек в рамках CAP.

4. Распределение ответственности по контролю за реализацией CAP.

5. Разработка директивного графика (процедуры агрегирова ния CAP отдельных детальных ячеек нижнего уровня структуры декомпозиции работ в CAP всего проекта).

6. Оценка фактического хода реализации проекта в сравнении с директивным графиком (измерение показателей (t) и (t)).

7. Оценка эффективности затрат (измерение показателей (t) e и (t)).

8. Прогнозирование суммарных фактических затрат на проект на основании наблюдаемого хода его реализации.

9. Управление незавершенными работами.

10. Управление изменениями директивного графика выполне ния проекта.

Видно, что с точки зрения оперативного управления ключевую роль играют этапы 8–10: на основании наблюдаемых значений основных показателей освоенного объема прогнозируются резуль таты реализации проекта и принимаются решения по оперативному управлению - корректировке директивного графика, внесение изменений в запланированные параметры еще невыполненных работ и т.д.

Основные проблемы при применении приведенного алгоритма заключаются в определении процедур агрегирования (методов измерения освоенного объема) и прогнозирования. Поэтому оста новимся на этих вопросах более подробно.

Методы измерения освоенного объема.

На сегодняшний день наибольшее распространение получили следующие методы измерения освоенного объема [122]:

1. Метод взвешенных характерных точек (weighted milestones) заключается в перечислении для каждой операции (пакета работ и т.д.) характерных точек – нормативных значений показателей результатов деятельности, достижение которых означает заверше ние определенного этапа. При этом освоенный объем измеряется как взвешенное значение достигнутых нормативных показателей [132]. Данный метод хорошо адаптирован для измерения результа тов деятельности, но характерные точки трудно использовать для планирования и управления.

2. Метод фиксированной формулы для отдельной операции за ключается в приписывании каждой операции фиксированного отношения x% / y% (например, 0/100, 25/75, 50/50 и т.д.), в соответ ствии с которым считается, что начало данной операции соответст вует x%, а завершение – y% “освоения”.

3. Метод процента выполнения (Percent Completed). Этот метод с одной стороны является одним из наиболее простых – для каждой операции используется оценка процента завершения, совокупность которых агрегируется по заранее установленной методике. С дру гой стороны, недостаток данного метода заключается, в том числе, в наличии так называемого «синдрома 90%» [117, 118] – исполни тели сообщают, что операция (этап и т.д.) «почти» завершена, в то время как до фактического завершения может быть еще очень далеко (как в смысле времени, так и в смысле требуемых ресурсов).

Поэтому рекомендуется априори устанавливать 80 – 90% границу для незавершенного проекта или операции [118].

4. Комбинация методов характерных точек и процента выпол нения – характерные точки устанавливают нормативные значения, снижая возможность искажения информации.

Более сложные методы рассмотрены в [142], где предложено вычислять взвешенный показатель выполнения (t) следующим образом:

(t) = p1 (t) + p2 (t) + p3 (t), где p1, p2, p3 – положительные веса, сумма которых равна единице, (t) – показатель выполнения контрольных точек (Milestones Per formance Index), вычисляемый как отношение «пройденных» кон трольных точек к их суммарному числу. В [122] предлагается также использовать показатель (t) для определения размеров поощрений исполнителей.

5. Метод эквивалентных единиц (Equivalent Completed Units) заключается в введении единой системы отсчета (единиц измере ния работ). Преимущество данного метода заключается в том, что в ряде случаев удается добиться аддитивности оценок отдельных операций [132]. Метод процента завершения может рассматривать ся как разновидность метода эквивалентных единиц (когда едини цей измерения является в общем случае неаддитивный процент завершения).

6. Метод стандартов (Earned Standards) заключается в установ лении для каждой операции детальных стандартов (гораздо более подробных, чем в методе характерных точек) результатов деятель ности, достижение которых означает определенное значение осво енного объема. Данный метод позволяет очень «точно» измерять значение освоенного объем, однако его использование требует большой подготовительной работы, а также регулярного и трудо емкого мониторинга (сбора и обработки значительного количества информации) реализации проекта.

На практике, естественно, зачастую используется комбинация перечисленных методов, выбираемая с учетом опыта руководите лей проекта, специфики проекта и т.д. В прикладных программах по управлению проектами (например, Primavera Project Planner for Enterprise (P3e) [147]) агрегирование осуществляется в том числе по: времени начала и завершения работ, требуемым ресурсам и т.д.

При этом затраты и количества суммируются, а времена (даты) вычисляются как минимум/максимум сроков (ранних или поздних) и т.д. в зависимости от установок пользователя.

Прогнозирование результатов выполнения проекта.

Общепризнанно, что основным свойством методики освоенно го объема является возможность: «раннего обнаружения» (обнару жения на ранних стадиях реализации проекта) несоответствия фактических показателей проекта плановым значениям, прогнози рования на их основании результатов выполнения проекта (сроков, затрат и т.д.) и принятия своевременных корректирующих воздей ствий, вплоть до прекращения проекта (примером может служить крупный военный проект [112-114], который был свернут на осно вании прогноза перерасхода средств, несмотря на то, что освоен ный объем уже составлял несколько сотен миллионов долларов).

Для прогнозирования результатов выполнения проекта в рабо тах [106, 109, 111, 122, 145, 152] предлагается использовать сле дующие оценки.

Основным показателем, оцениваемым в ходе реализации про екта, является величина C фактических суммарных затрат на про ект. Так как показатель (t) характеризует эффективность исполь зования средств, то в момент времени t величина C может быть оценена как сумма уже потраченных средств и средств, необходи мых для завершения проекта. Последняя величина определяется как отношение разности между плановым значением суммарных затрат и освоенным объемом затрат к эффективности использова ния средств, то есть1:

(1) C(t) = c(t) + (C0 – ce(t)) / (t).

Альтернативой является использование «пессимистической» оценки суммарных затрат на проект, в которой эффективностью использования средств считается произведение (t) (t):

(2) C(t) = c(t) + (C0 – ce(t)) / (t) (t).

Понятно, что если существует момент времени t0 такой, что при t t0 величина (t) (и (t)) остается постоянной, то есть (t) =, t t0, то (1) – точная оценка. Большинство известных (исключе ния - [113, 131]) на сегодняшний день результатов использования методики освоенного объема существенно использует предположе ние о «стабилизации» показателей (t) и (t) в ходе реализации проекта (см. рисунок 2).

(t) (t) t t Рис. 2. Стабилизация коэффициентов (t) и (t) Более того, в [103] утверждается (правда, без должного обос нования), что «на основании более 500 контрактов Министерства Обороны США можно сделать вывод, что суммарный перерасход средств будет не менее перерасхода на момент 15%-го завершения В настоящей работе используется независимая нумерация формул внутри каждого параграфа.

контракта». В [122] приводится мнение, что характеристики (t) и (t), наблюдаемые на момент 10-20% завершения контракта, далее остаются стабильными.

Детальное исследование статистических свойств коэффициен тов (t) и (t) проведено в работе [113], в которой на основании анализа хода выполнения 64 завершенных крупных военных (науч но-производственных) проектов с 95% доверительным интервалом показано, что: а) среднее значение суммарного перерасхода средств (и в долларах, и в процентах) превышает текущее значение пере расхода средств;

б) перерасход средств (и в долларах, и в процен тах) растет с ростом процента завершения проекта. Для обоснова ния последнего утверждения вычислялась регрессия перерасхода средств (t)/c(t) по проценту завершения проекта. Скорость роста e перерасхода составляла от 0.1 до 0.4 в зависимости от типа проекта.

К сожалению, как исследования, так и статистические данные, по проектам, реализуемым в России, на сегодняшний день отсутст вуют. Проведение элементарного статистического анализа (в рам ках основных и производных показателей освоенного объема) процесса их выполнения позволило бы не только обосновать или опровергнуть возможность использования простых прогнозных оценок типа (1), но и выявить качественную специфику управления проектами в существующих в России социально-экономических условиях.

Тем не менее, в прикладных компьютерных программах по управлению проектами используются оценки типа (1) и (2). Более конкретно, например, в P3e пользователю предлагается оценивать средства, необходимые для завершения проекта, либо как разность между суммарными плановыми затратами и текущими затратами (традиционных подход к анализу затрат), либо (в рамках методики освоенного объема) по следующей формуле (см. также раздел «Прикладная методика освоенного объема»): (C0 – ce(t)), где множитель принимает одно из трех значений: 1) единица;

2) любое постоянное значение, задаваемое пользователем;

3) 1/ (t) или 1/ (t) (t).

Помимо оценки суммарных затрат на выполнение проекта, на основании наблюдаемых показателей освоенного объема возможно также прогнозирование и других характеристик проекта.

Например, может быть оценен показатель r(t) (TCPI – To Complete Performance Index), характеризуемый отношение оставше гося объема работ (выраженного в финансовых показателях) к имеющимся или требуемым средствам:

(3) r(t) = (C0 – ce(t)) / G(t) 1, где знаменатель G(t) может выбираться равным суммарным плано вым затратам на проект C0, оценке C(t) суммарных затрат на про ект, вычисляемой по выражениям (1) или (2), разности между суммарными плановыми затратами и текущими затратами и т.д.

Содержательно показатель r(t) характеризует как должны исполь зоваться средства (какова должна быть эффективность использова ния средств начиная с текущего момента, для которого вычисляется оценка, до конца реализации проекта), чтобы проект был завершен в соответствии с запланированными показателями.

Для прогнозирования результатов выполнения проекта на ос новании текущих наблюдений хода его реализации, помимо про стых эвристик типа (1) и (2), соответствующих «линейному трен ду»1 (см. ниже более подробно), применялись и более сложные подходы, начиная от методов статистического анализа и заканчивая когнитивными моделями. Проведем их обзор.

В [151] описываются следующие методы прогнозирования (мы их перечислим в порядке усложнения и включения предыдущих случаев как частные):

1. В рамках простейшей методики оценки затрат (без учета ос военного объема):

(4) C(t) = c(t) / l(t), где l(t) – процент завершения.

2. Усреднение и регрессия (с учетом всей истории наблюде ний) показателей типа (1), (2) и (4).

3. Статистический анализ рядов показателей типа (1) и (2) с вычислением дисперсии, доверительных интервалов и т.д. (см.

также [149]).

4. Статистический анализ рядов показателей типа (1) и (2) с вычислением трендов [115], скользящих средних для C(t), учет Для многих работ по методике освоенного объема характерно предпо ложение о линейности планов (исключение - [131]), и для всех работ – предположение о постоянных интенсивностях выполнения работ (см.

[106, 131], а также более подробно ниже).

различных наблюдений с различными весами (присваемыми ме неджером проекта или исследователем операций субъективно).

Необходимо подчеркнуть, что на сегодняшний день наиболь ший (и в своем роде единственный) опыт стандартизации и исполь зования методики освоенного объема накоплен в Министерстве Обороны США. В стандарты C/SCSC и компьютерные программы встроены различные методики оперативного оценивания, напри мер, суммарных затрат на проект. Эти (в основном (1), (2) и неко торые статистические) методы идентифицируются и тестируются на реальных проектах, что позволяет сравнивать их эффективность [114]. Институт PMI ежегодно публикует обзоры программного обеспечения, в том числе – использующего методику освоенного объема [148].

В [154, 155] предлагается использовать следующую прогноз ную модель:

(5) J = p1 X1 + p2 X2 + … + pm Xm + Const +, где J – прогнозируемая (оцениваемая величина, например, факти ческие суммарные затраты на проект), Xi, i = 1, 2, …, m – факторы, pi – их веса, m - число факторов, - ошибка. На основании опроса экспертов выявляются факторы (например, процент завершения проекта, политическая ситуация и др. [154, 155]), далее путем статистического моделирования производится идентификация модели (генерируются значения факторов, для которых эксперты оценивают величину J), то есть вычисляются веса.

В целом, завершая обзор методов, используемых в рамках ме тодики освоенного объема, следует констатировать, что авторами предлагались частные модели, совокупность которых далеко не полна и в значительной степени несистематизирована. Это тем более странно, что в теории принятия решений и прогнозировании (см. [2, 7, 47, 51, 70, 80 и др.]) накоплен значительный опыт анализа и синтеза алгоритмов идентификации, прогнозирования и т.д. (в том числе с учетом адаптации и обучения [97-99] в рамках совре менных информационных систем [30, 49 и др.]) в самых разных областях. Поэтому, наверное, можно считать, что использование этих подходов применительно к методике освоенного объема явля ется перспективной задачей инженерных исследований и разрабо ток.

Наиболее распространенными причинами несовпадения фак тических затрат и освоенных затрат (наличия перерасхода средств) являются ошибки планирования и невыполнение требований каче ства выполняемых работ, то есть необходимость проведения до полнительных работ (rework) для достижения требуемого уровня качества, что требует дополнительных затрат. В работе [117, 118] приводится статистика дополнительных работ для различных типов проектов и областей, в которых они выполняются (военные проек ты, строительные, проекты по созданию программного обеспечения и др.). Там же подчеркивается возможность несовпадения сооб щаемых исполнителями параметров проекта с фактическими (в том числе – упомянутый выше «синдром 90%»). Например, если из-за необходимости проведения дополнительных работ значение осво енных затрат, которые известны исполнителю, но неизвестны достоверно менеджеру проекта, осуществляющему контроль и оперативное планирование, в момент времени t оказалось равным ce(t), то исполнитель может сообщить, что значение освоенных затрат равно s(t), то есть s(t) [ce(t);

c(t)] и возможно, что s(t) ce(t) (см. рисунок 3).

затраты c0(t) c(t) s(t) ce(t) время t Рис.3. Несовпадение сообщения исполнителя о значении освоенных затрат с фактическим значением В работе [117, 118] подчеркивается возможность несовпадения сообщаемого значения освоенных затрат (или сообщаемого значе ния освоенного объема) с фактическими, однако не рассматривают ся механизмы принятия решений, позволяющие учитывать подоб ные искажения.

Таким образом, анализ результатов теоретического исследо вания и практического применения методики освоенного объема позволяет констатировать, что использование показателей освоен ного объема является распространенным и эффективным методом оперативного управления проектами. Тем не менее, существующие модели не учитывают или не полностью учитывают следующие факторы.

Во-первых, все показатели проекта описываются в терминах затрат. При этом не учитывается «физический» (измеряемый в физических величинах, то есть отличных от финансовых) объем работ, который может быть связан с затратами достаточно слож ным образом и является, наряду с затратами, одним из важнейших показателей реализации проекта и основным критерием его завер шения. Такое положение дел вполне естественно для стабильных социально-экономических условий. В современной российской действительности измерение всех характеристик проекта в финан совых показателях зачастую просто невозможно.

Во-вторых, отсутствуют относительно универсальные методы агрегирования временных, финансовых и «физических» показате лей выполнения операций, учитывающие технологическую и дру гие виды взаимосвязи между этими показателями.

В-третьих, методика освоенного объема опирается на исполь зование такой (не всегда достоверно известной руководителю проекта) величины как освоенный объем (или процент выполнения работ, на основе которого рассчитывается освоенный объем). При этом отсутствуют механизмы принятия решений, учитывающие свойство активности участников проекта, то есть - возможность самостоятельного выбора действий, искажения информации о параметрах проекта при ее сообщении от более информированных участников менее информированным и т.д.

Наличие перечисленных нерешенных проблем позволяет сформулировать задачи настоящей работы:

1. Описание формальной модели проекта, включающей его описание в терминах показателей освоенного объема, и решение в рамках этой модели задач планирования, прогнозирования резуль татов выполнения проекта и синтеза оптимальных управляющих воздействий с учетом агрегирования показателей освоенного объе ма и активности поведения участников проекта.

2. Описание оптимальных механизмов оперативного управле ния проектами, описываемых показателями освоенного объема, в том числе механизмов: планирования и стимулирования, учиты вающих активность поведения участников проекта и возможную неопределенность относительно условий его выполнения.

3. Описание прикладной методики освоенного объема.

Выделенная на основании проведенного обзора моделей и ме тодов управления проектами с помощью методики освоенного объема совокупность задач определила следующую структуру изложения материала настоящей работы.

Первая глава посвящена описанию методики освоенного объ ема в оперативном управлении проектами (отдельными проектами или их совокупностью) в условиях полной информированности.

В разделе 1.1 перечисляется максимальная («расширенная») система показателей освоенного объема и обсуждаются проблемы их использования при управлении проектами в рамках двух ключе вых предположений. Первое предположение – рассматривается агрегированное описание проекта, без выделения составляющих его частей – фаз, этапов, работ, операций и т.д. Второе предполо жение – на момент принятия решений имеется достоверная и пол ная информация о тех параметрах, которые не отнесены в рассмат риваемой модели к неопределенным, то есть имеется пассивная модель проекта. Кроме того предполагается, что участники проекта пассивны, то есть не обладают собственными интересами, способ ностью к искажению информации и т.д.

В разделе 1.2 вводится минимальная система показателей ос военного объема, в терминах которых формулируется задача опе ративного управления, для которой показывается, что в ней могут быть выделены три составляющие – задача идентификации проек та, задача прогнозирования результатов реализации проекта и собственно задача управления, причем для первых двух задач обосновывается, что они могут быть сведены к известным оптими зационным задачам.

В разделе 1.3 доказывается, что в условиях полной информи рованности задача управления проектом включает задачи планиро вания и задачи оперативного управления, причем, обосновывается, что оба эти класса задач эквивалентны и могут быть сведены к каноническим задачам оптимального управления.

В разделе 1.4 производится отказ от агрегированного описания проекта, то есть методика освоенного объема обобщается на случай группы проектов, и рассматриваются проблемы агрегирования показателей освоенного объема при представлении проекта в виде комплекса взаимосвязанных операций.

Во второй главе производится отказ от предположения о пас сивности участников проекта, то есть рассматривается комплекс механизмов оперативного управления, учитывающих активность участников проекта. В состав этого комплекса входят: механизмы активной экспертизы (раздел 2.1), направленные на получение информации о внутренних и внешних условиях реализации проек та, прогнозов результатов его выполнения и т.д.;

механизмы стиму лирования (раздел 2.2), побуждающие исполнителей проекта со кращать его продолжительность, в том числе – в условиях неопределенности;

и механизмы планирования (раздел 2.3), побуж дающие исполнителей сообщать руководителю проекта достовер ную информацию о своих параметрах, отражающих их возможно сти по сокращению продолжительности проекта.

В третьей главе обсуждаются возможности и результаты практического использования методики освоенного объема в опе ративном управлении проектами. В том числе, приводится алго ритмическая реализация методики освоенного объема, ориентиро ванная на применение современных программных средств по управлению проектами.

Глава 1. Показатели освоенного объема в оперативном управлении проектами 1.1. Модель проекта и показатели освоенного объема Рассмотрим агрегированное описание проекта в виде одной операции. Следуя методологии освоенного объема (см. обзор во введении) необходимо учитывать плановые показатели, фактиче ские показатели и показатели освоенного объема. Выше подчерки валось, что, помимо финансовых показателей (см. приведенное во введении описание методики освоенного объема в терминах за трат), необходимо учитывать показатели, отражающие результаты выполнения работ и выражаемые в «физических» единицах (на пример - штуки, метры, этажи, часы и т.д.), для которых возможно измерить как количественную характеристику, так и характеристи ки качества. Поэтому, наряду с тремя финансовыми показателями, введем три показателя «физического» объема1 – далее просто «объ ема» - (плановый, фактический и освоенный) и перечислим произ водные показатели, которые могут быть построены на основании шести основных показателей (избыточность этой системы показа телей обсуждается ниже).

Сделав маленькое отступление, отметим, что более корректно было бы описывать проект восьмью показателями: три показателя затрат (план – факт – освоенные), три показателя ресурсов (план – факт – освоенные), используемых при выполнении проекта, и два показателя объема (план – освоенный). Например, если проект заключается в рытье траншеи, то объемом будет протяженность траншеи или объем грунта и т.д., а ресурсами – рабочие, экскавато ры, лопаты и т.д. С точки зрения причинно-следственных связей первичны ресурсы, а затраты и объем являются вторичными пока зателями (иногда, и в основном – финансовые показатели, могут быть пересчитаны через ресурсы). Однако использование восьми показателей усложняет описание проекта, тем более, что во многих случаях эти показатели взаимосвязаны. Поэтому введем предпо ложение о взаимно-однозначном соответствии между затратами и Здесь и далее по тексту под объемом понимается суммарный (кумуля тивный) объем.

ресурсами, исключив из рассмотрения ресурсы, то есть сократив число показателей с восьми до шести1.

Итак, каждая операция и проект в целом описываются сле дующими переменными («основные показатели освоенного объе ма»)2 (см. рисунки 4 и 5):

C0 – планируемые суммарные затраты на проект (BAC – Budget At Completion или BC – Budget Cost);

T0 – планируемый срок завершения проекта;

X0 – суммарный объем работ по проекту (QAC – Quantity At Completion);

c0(t) – планируемая динамика затрат (BCWS – Budgeted Cost of Work Scheduled);

c(t) – фактическая динамика затрат (ACWP – Actual Cost of Work Performed);

ce(t) – динамика освоенных затрат (BCWP – Budgeted Cost of Work Performed);

x0(t) – планируемая динамика объемов работ (BQWS – Budg eted Quantity of Work Scheduled);

x(t) – фактическая динамика объема (AQWP – Actual Quantity of Work Performed);

xe(t) – освоенный объем (BQWP – Budgeted Quantity of Work Performed):

T – фактический срок окончания проекта;

C – фактические суммарные затраты на проект (EAC – Estimate At Completion).

Традиционно в работах зарубежных авторов под «объемом» (quantity) подразумеваются ресурсы, в работах отечественных авторов – «физиче ский» объем. Мы будем следовать сложившейся (российской!) традиции, считая, что при заданных затратах однозначно определяются ресурсы, которые могут быть использованы (ограничения на ресурсы легко пере носятся на затраты). Кроме того, пока (в настоящем разделе) мы вы нуждены сохранить такой трудноинтерпретируемый показатель как фактический объем. Несколько забегая вперед, можно сказать (см.

следующий раздел), что фактический объем и освоенные затраты могут быть без потери общности исключены из списка показателей, по кото рым описывается проект.

В скобках приводятся английские термины в соответствии со стан дартами [122, 147].

затраты C C c0(t) c(t) ce(t) время t (t) 0 c T T (t) 0c Рис. 4. Показатели динамики затрат объем X x0(t) xe(t) время t (t) 0 T x T (t) 0x Рис. 5. Показатели динамики объема Производные показатели освоенного объема:

с0(t) = c0(t) – c(t) - разность между плановыми и фактически ми затратами;

с(t) = c0(t) – ce(t) - разность между плановыми и освоенными затратами;

сe(t) = c(t) – ce(t) 0 – разность между фактическими и осво енными затратами (Cost Overrun – «перерасход» средств);

x0(t) = x0(t) – x(t) - разность между плановым и фактическим объемом;

x(t) = x0(t) – xe(t) - разность между плановым и освоенным объемом;

xe(t) = x(t) – xe(t) 0 – разность между фактическим и освоен ным объемом1;

(t) = ce(t) / c0(t) – показатель объема освоенных затрат (SPI – c Schedule Performance Index);

(t) = ce(t) / c(t) – показатель динамики затрат (CPI – Cost Per c formance Index);

(t) = xe(t) / x0(t) – показатель освоенного объема (QSPI – x Quantity Schedule Performance Index);

(t) = xe(t) / x(t) – показатель динамики объема (QPI – Quantity x Performance Index);

- (t) = t - c0 (сe(t)) – текущая задержка (от плана), определяет 0с ся из условия: c0(t- (t)) = ce(t);

0c (t) = t - c-1(ce(t)) – текущая задержка по затратам, определя с ется из условия: c(t- (t)) = ce(t);

c - (t) = t - x0 (xe(t)) – текущая задержка (от плана), определя 0x ется из условия: x0(t- (t)) = xe(t);

0x - (t) = t - x (xe(t)) – текущая задержка по затратам, определя x ется из условия: x(t- (t)) = xe(t);

x e0 = X0 / C0 – плановая эффективность2 проекта в целом;

Очевидно, что независимыми являются две из трех разностей c и x.

Под эффективностью проекта, следуя сложившейся в математической экономике традиции [7, 15, 45, 46, 63 и др.], будем понимать отношение объема работ к затратам, то есть удельную стоимость объема.

e0(t) = x0(t) / c0(t) – плановая эффективность использования средств на момент времени t;

e = X / C – фактическая эффективность проекта в целом1;

e(t) = xe(t) / c(t) – фактическая эффективность использования средств на момент времени t.

Таким образом, проект считается завершенным (цель проекта достигнута), как только освоенный объем совпадет с суммарным объемом работ по проекту: xe(T) = X0. Таким образом, именно объем, а не затраты, является характеристикой, которой определя ется критерий завершения проекта2. Продолжительность проекта и суммарные затраты являются при этом основными показателями, выступая в роли составляющих критерия эффективности и/или ограничений.

Обсудим качественно содержательные интерпретации введен ных показателей, а также ту первичную информацию о ходе реали зации проекта, которую они несут.

Итак мы ввели шесть первичных динамических показателей освоенного объема. Их (даже поверхностное) наблюдение несет массу качественной информации о ходе реализации проекта и позволяет констатировать, например: недостаточность финансиро вания, перерасход средств, отставание от директивных сроков и т.д.

Более детальный анализ дает возможность делать прогнозы и вы бирать управляющие воздействия. Как отмечалось выше, разделе ние плановых и фактических показателей и их анализ традиционно используется не только в управлении проектами, но и в управлении вообще. Зачем же необходимо разделение фактических показателей и показателей освоенного объема? Дело заключается в следующем.

Можно условно выделить две «причины» несовпадения плановых и фактических показателей проекта – «внешнюю» и «внутреннюю».

К «внешним» причинам может быть отнесено, например, недоста Отметим, что в фактической эффективности использования средств, в отличие от плановой, фигурирует отношение освоенного объема не к освоенным затратам, а к фактическим затратам.

Если в качестве характеристики завершения проекта понимаются затраты (см. введение), то возникает отдельная проблема - что пони мать под завершением проекта и что такое 100% выполнения. При использовании в качестве критерия объема таких проблем, как правило, не возникает.

точное финансирование, ошибки в планировании и т.д. Но, несов падение освоенных средств и затраченных свидетельствует уже о том, что средства используются неэффективно внутри самого проекта. Действительно, утверждение о том, что потрачена некото рая сумма несет информацию с точки зрения финансовой отчетно сти, но ничего не говорит о состоянии проекта – фактический эффект расходования этой суммы может отличаться (и на практике очень часто отличается) от запланированного. Например, при строительстве дома планировалось, что «нулевой» цикл потребует некоторых затрат. Даже если фактический график финансирования совпадает с директивным, то есть все средства поступили вовремя и в полном объеме, это вовсе не означает, что «нулевой» цикл завершен. Часть средств могла быть потрачена не по назначению, часть уйти на исправление брака и т.д. (см. выше).

Введенные показатели освоенного объема, даже основные, не являются независимыми – как правило, существует так называемая «технологическая1» связь между ресурсами (затратами) и объемом.

Пусть при планировании считалось, что эта связь – «технология» отражена оператором G0( ), то есть x0(t) = G0(c0(t)). В силу внешних причин возможно, что c(t) c0(t), что приведет к несовпадению фактического объема и планового. Кроме того, в силу внутренних причин (например, неполной информированности, приведшей к ошибкам в планировании) возможна неправильная оценка операто ра G0( ) – на самом деле связь между затратами и объемом имеет вид x(t) = G(c(t)). Подобные ошибки (G( ) G0( )) приведут к не совпадению фактического и освоенного объема. Следовательно, для эффективного управления необходимо, учитывая как внешние, так и внутренние причины, решать задачи идентификации, прогно зирования и управления (см. таблицу 1, в которой условно отраже на эта последовательность этапов).

Термин «технологическая» отражает тот факт, что акцент делается на технологии «преобразования» ресурсов (затрат) в объем.

Причины Идентификация Прогнозирование Управление /Задачи «Что происхо- «Что произойдет, «Какие меры дит?» если не принять следует мер?» предпринять?» Внешние: Определение Оценка показате- Реакция на:

c(t) c0(t) параметров лей проекта в «внешнюю» и модели проекта будущие момен- «внутреннюю» на основании ты времени и причину – Внутренние: имеющихся сравнение их с корректировка наблюдений за плановыми директивного G( ) G0( ) ходом его реали- значениями. графика и зации. технологии.

Таблица 1. Проблемы и задачи оперативного управления проектами при использовании методики освоенного объема.

Относительно основных показателей освоенного объема сле дует сделать также следующее замечание. Как отмечалось выше, величины x0, c0 являются плановыми (то есть известны – «наблю даемы» руководству проекта), а величины xe и ce, как правило, ненаблюдаемы и для их оценки используются процедуры, вклю чающие сообщение информации от более информированных уча стников проекта менее информированным. Следовательно, при решении задач идентификации, прогнозирования и управления необходимо учитывать активность участников, то есть их предпоч тения, интересы, возможность манипулировать информацией и т.д.

Охарактеризовав кратко существующие проблемы, перейдем к описанию взаимосвязи между затратами и объемом.

Взаимосвязь между затратами и объемом. Будем считать, что единственным ресурсом u(t) в проекте являются финансы1 (см.

dc(t) предположение выше), то есть ресурс u(t) = c’(t) =.

dt С содержательной точки зрения, если c(t) – суммарные затраты, то ресурс u(t) – затраты (деньги) в единицу времени – однозначно связан с затратами. В соответствии с методологией СПУ количество ресурса в некоторый момент времени определяет скорость выполнения проекта.

Зависимость между скоростью выполнения проекта (изменением объема Примем, что скорость w( ) выполнения проекта (интенсив ность), то есть скорость изменения объема, является функцией ресурса и, быть может, уже освоенного объема и времени (то есть операторы G0( ) и G( ) неявно задаются следующими уравнениями):

t T dxe (t) = w(u(t)), xe(t) = w(u( )) d, w(u( )) d = X0.

dt 0 В более общем случае:

dxe (t) = w(xe (t), u(t), t), xe(0) = 0, xe(T) = X0.

dt Пример 1. Рассмотрим частный случай линейных интенсивно стей1, то есть проект, в котором: 1) скорость изменения объема пропорциональна ресурсу: w(u(t)) = k0 u(t), k0 > 0;

2) количество ресурса u(t) = u0 постоянно во времени.

Если u0 – планируемое количество ресурса (затраты в единицу времени), то планируемая динамика затрат имеет вид:

(1) c0(t) = u0 t, а планируемая динамика объема:

(2) x0(t) = k0 u0 t.

Если X0 – суммарный объем работ по проекту, то планируемая продолжительность проекта составит (см. рисунок 7):

(3) T0 = X0 / (k0 u0), а суммарные плановые затраты на проект, независимо от интенсив ности потребления ресурса, равны:

(4) С0 = X0 / k0.

в единицу времени) и количеством ресурса в СПУ получила название интенсивности [4, 14, 20, 25, 39 и др.].

Следует отметить, что единственным результатом, полученным зарубежными авторами при исследовании взаимосвязи между затрата ми и объемом в рамках методики освоенного объема, является приведен ная в работе [152] интерпретация показателей освоенного объема для случая, когда отношение затрат к объему постоянно:

c0(t) / x0(t) = ce(t) / xe(t) = Const. Предположение о линейной связи затрат и объема является наиболее распространенным (см. обсуждение в [106]).

Следует отметить, что, как C правило, в управлении проекта ми считается, что взаимосвязь между временем завершения проекта T и суммарными затра тами на проект C имеет вид, T приведенный на рисунке 6.

Рис. 6. Зависимость затрат на Содержательные интерпретации проект от времени его завершения такой зависимости очевидны.

100% x0(t)/X0 – план xe(t)/X0 – освоенный объем t t (t) T x T Рис. 7. Динамика объема в первом случае примера 1.

Плановые значения основных показателей:

e0 = X0 / C0 = k0 – плановая эффективность проекта в целом;

e0(t) = x0(t) / c0(t) = k0 – плановая эффективность использования средств.

Имея зависимости (1)-(4), можно до начала реализации проекта решать следующие задачи планирования: определения интенсивно стей или количества ресурсов, позволяющих выполнить проект за заданное время;

определения времени выполнения проекта при заданных ограничениях на интенсивности и ресурсы и т.д. (еще раз подчеркнем, что в рамках рассматриваемой модели минимизиро вать суммарные затраты нельзя, так как они не зависят от интен сивностей и динамики потребления ресурса). Решив перечисленные задачи планирования, можно оценивать упущенную выгоду, штра фы и прочие санкции за перерасход средств и задержки в достиже нии конечной цели проекта.

Рассмотрим теперь задачи оперативного управления. Если в процессе реализации показатели освоенного объема и фактических затрат совпадают с плановыми, то при фиксированных целях (отно сительно планируемого суммарного объема и планируемой про должительности) необходимость в оперативном управлении отсут ствует. Если же в процессе реализации проекта наблюдаются отклонения основных показателей освоенного объема от плановых значений, то возникает необходимость оперативного управления.

Рассмотрим возможные случаи.

1. Предположим, что фактическое количество ресурса u оказа лось меньше планируемого (внешняя причина – см. таблицу 1): u u0, а интенсивность w равна плановой (внутренняя причина отсут ствует). Тогда динамика фактических затрат совпадает с динамикой освоенных затрат и имеет вид:

(5) c(t) = ce(t) = u t c0(t), а значение освоенного объема совпадает с фактическим объемом и равно:

(6) x(t) = xe(t) = k0 u t x0(t).

Если X0 – суммарный объем работ по проекту, то фактическая продолжительность проекта составит (см. рисунок 7):

(7) T = X0 / (k0 u) T0, а фактические суммарные затраты на проект не изменятся (см.

выражение (4)).

Вычислим основные показатели:

(t)=ce(t)/c0(t)=u/u0;

(t)=ce(t)/c(t)=1;

(t)=xe(t)/x0(t)=u/u0;

c c x (t)=xe(t)/x(t)=1;

(t)=(u0-u)t/u0;

(t)=0;

(t)=(u0-u)t/u0;

x 0с с 0x (t)=0;

e0=X0/C0=k0;

e(t)=xe(t)/c(t)=k0.

x Итак, фактические суммарные затраты и фактическая эффек тивность совпадают с плановыми значениями. Тем не менее, про должительность проекта увеличилась на следующую величину:

u X0 - u (8) T = T – T0 =.

k0 u0u Специфика рассматриваемой модели заключается в том, что сразу после начала реализации проекта по единственному наблю дению освоенного объема или одного из введенных относительных показателей возможно однозначно определить и фактическое (и требуемое) значение ресурса, и действительную (и оставшуюся) продолжительность проекта.

Обнаружив в момент времени t < T несоответствие освоенного объема (и затрат) и плановой динамики объема, мы имеем возмож ность решать задачи оперативного управления по корректировке параметров реализации проекта. Например, для того, чтобы завер шить проект в плановые сроки (см. штрих-пунктирную линию на рисунке 7) необходимо в оставшееся время (T0 - t) использовать ресурс в объеме:

X - k0ut (9) u* =, k0 (T0 - t) что не приводит к возрастанию суммарных фактических затрат по сравнению с плановыми.

2. Предположим, что внешняя причина отсутствует, то есть u = u0, но присутствует внутренняя причина – фактическая интен сивность k использования ресурса u0 оказалось меньше планируе мой: k k0. Тогда динамика фактических затрат совпадает с плано вой (при t T0):

(10) c(t) = u0 t = c0(t), а значение освоенного объема отстает от планового значения (см.

рисунок 8):

(11) x(t) = xe(t) = k u0 t x0(t).

Если X0 – суммарный объем работ по проекту, то фактическая продолжительность проекта составит (см. рисунок 4):

(12) T = X0 / (k u0) T0, причем фактические суммарные затраты на проект превысят пла новое значение:

(13) С = X0 / k C0.

Вычислим основные показатели:

(t)=ce(t)/c0(t)=1;

(t)=ce(t)/c(t)=1;

(t)=xe(t)/x0(t)=k/k0;

c c x (t)=xe(t)/x(t)=1;

(t)=0;

(t)=0;

(t)=(k0-k)t/k0;

x 0с с 0x (t)=0;

e0=X0/C0=k0;

e(t)=xe(t)/c(t)=k.

x Итак, фактические суммарные затраты превышают плановое значение, фактическая эффективность ниже, а фактическая про должительность проекта увеличилась на:

X k0 - k (14) T = T – T0 =.

u0 k0k Опять же, в рассматриваемой модели сразу после начала реа лизации проекта по единственному наблюдению освоенного объе ма или одного из относительных показателей возможно однозначно определить фактическое значение интенсивности, действительную продолжительность проекта, затрат и т.д.

C - C C c(t)/C0 – фактические затраты 100% c0(t)/C0 – планируемые x(t)/X0 – освоенный затраты объем t t (t) T x T Рис. 8. Динамика объема во втором случае примера 1.

Обнаружив в момент времени t < T несоответствие освоенного объема (и затрат) и плановой динамики объема, возможно решение задач оперативного управления по корректировке параметров реализации проекта. Например, для того, чтобы завершить проект в плановые сроки (см. линию, выделенную точками на рисунке 8) необходимо: либо в оставшееся время (T0 - t) использовать ресурс в объеме:

X - ku0t (15) u* =, k(T0 - t) либо увеличить интенсивность (что не всегда возможно с техноло гической точки зрения) до величины X - ku0t (16) k* =, u0 (T0 - t) что в первом случае приводит к возрастанию суммарных фактиче ских затрат по сравнению с плановыми на величину k0 - k C = X0, а во втором случае – не меняет суммарных затрат.

k0k Величина C позволяет оценить перерасход средств, вызванный неправильной плановой оценкой, при условии необходимости завершения проекта в срок.

3. Предположим, что присутствуют и внешняя причина, то есть u < u0, и внутренняя причина - фактическая интенсивность k ис пользования ресурса u оказалось меньше планируемой: k k0. Тогда динамика фактических и освоенных затрат имеет вид:

(17) ce(t) = c(t) = u t c0(t), а значение освоенного объема отстает от планового значения:

(18) x(t) = xe(t) = k u t x0(t).

Если X0 – суммарный объем работ по проекту, то фактическая продолжительность проекта составит:

k0u0 - ku (19) T = X0 / (k u) T0, T = X0.

k0u0ku Вычислим основные показатели:

(t)=ce(t)/c0(t)=u/u0;

(t)=ce(t)/c(t)=1;

(t)=xe(t)/x0(t)=ku/k0u0;

c c x k0u0 - ku (t)=xe(t)/x(t)=1;

(t)=(u0-u)t/u0;

(t)=0;

(t)= t;

(t)=0.

x 0с с 0x x k0u Для того, чтобы завершить проект в плановые сроки необхо димо в оставшееся время (T0 - t) использовать ресурс и интенсив ность, удовлетворяющими уравнению:

X - kut (20) k* u* =.

T0 - t Отметим, что для всех случаев рассматриваемого примера вы полнено:

(21) T = max { (T);

(T);

(T);

(T)}.

0с с 0x x Рассмотрим другую задачу. Пусть за каждый день превышения планового срока завершения проекта накладываются штрафные санкции в размере > 0. Тогда задача минимизации упущенной выгоды будет заключаться в определении минимального суммарно го значения ресурсов, используемых начиная с момента времени t обнаружения отклонений реальной траектории от директивной до момента T завершения проекта (которое также необходимо опреде лить) то есть:

u* (T - t) + 0 (T - T0 ) min u*, T (22) T T0, ku0t + ku*(T - t) = X.

Решение задачи (22) совпадает с выражением (15). Содержа тельно при ненулевых штрафах за задержку в завершении проекта оптимальным является его завершение точно в срок, при этом фактические суммарные затраты на реализацию проекта совпадают с (13).

Итак, показатели освоенного объема в рассматриваемом при мере позволяют тривиально прогнозировать (в результате единст венного точного наблюдения за реализацией проекта) как время завершения проекта:

(23) T = T0 / (t), x так и фактические затраты на выполнение (и, соответственно, завершение) проекта:

(24) C = X0 / e(t) = X0 (t) / (t).

x c Еще раз подчеркнем, что и в первом, и во втором случае фак тические затраты на проект не изменялись в процессе оперативного управления, которое было нацелено на выполнение проекта в пла новые сроки.

Более того, однократное наблюдение одного из параметров проекта позволяет в рамках введенных предположений однозначно определить и спрогнозировать будущие значения основных его параметров (так как ресурс и интенсивность считались постоянны ми во времени, то левые части выражений (23) и (24) не зависят от времени!). • Сделанный в результате рассмотрения примера вывод вполне согласован с результатами зарубежных авторов и имеющимся опытом практического применения методики освоенного объема, в частности – в крупных проектах, выполняемых по заказу Мини стерства обороны США. Более конкретно, в работах [102, 103, 113, 122] утверждается, что: 1) статистические данные по проектам указанного типа (более пятисот проектов за последние тридцать лет) свидетельствуют о том, что показатели освоенного объема (в частности – текущая эффективность использования средств) меняются не более чем на 10% относительно того значе ния, которое было достигнуто к моменту 20% выполнения проекта;

2) оценки (23) и (24)2 могут и должны (по стандартам того же Министерства обороны) использоваться для определения соответ ственно времени завершения и суммарных затрат проекта.

Таким образом, ключевая идея, лежащая в основе всей методи ки освоенного объема заключается в следующем – показатели освоенного объема являются характеристиками, на основании исследования которых на ранних стадиях выполнения проекта возможна (иногда достаточно точная) оценка их будущих значений и, следовательно, выработка на их основе своевременных опера тивных управляющих воздействий. Идея эта достаточно рацио нальна и грамотное ее использование на практике действительно целесообразно.

Проблема заключается в том, что существующие на сегодняш ний день реализации этой идеи (будем надеяться, что по крайней мере – теоретические реализации) не выдерживают никакой крити ки. Как отмечалось выше (в частности, во введении и в примере 1), использование оценок (23)–(24) адекватно только в рамках предпо ложений о линейной связи затрат и объема и постоянстве интен сивностей и ресурсов во времени, введенных в рассмотренном Символ « » здесь и далее обозначает окончание примера, доказательст ва и т.д.

Справедливости ради, следует отметить, что оценка (23) считается «оптимистической», а в качестве «пессимистической» оценки времени завершения проекта иногда предлагается использовать выражение T0 / ( (t) e(t)) (см. введение).

выше примере! Для общего случая (произвольных плановых зави симостей между объемом и интенсивностями и произвольных плановых графиков финансирования, то есть плановой динамики затрат) они играют роль не более чем эвристик, эффективность использования которых может оказаться чрезвычайно низкой.

В чем же причина столь широкой распространенности «не очень корректной» версии методики освоенного объема? Предста вим себе следующую ситуацию. Пусть параметры проекта (напри мер, интенсивности или объемы ресурсов и т.д.) зависят от некото рой внешней или внутренней причины – например - переменной, точное значение которой неизвестно до момента начала реализации проекта, но остается постоянным в течение всего времени реализа ции проекта. Следуя терминологии теории принятия решений назовем эту переменную «состоянием природы». На этапе плани рования (до начала реализации проекта) приходится использовать те или иные оценки состояния природы. Например, в рассмотрен ном выше примере состоянием природы являлись: в первом случае (внешняя причина) – фактическое количество ресурса u, во втором случае (внутренняя причина) – фактическое значение интенсивно сти k. До начала выполнения проекта в качестве оценок состояния природы («плановых» значений) использовались соответственно величины u0 и k0.

Если реализовавшееся значение состояния природы взаимно однозначно связано с наблюдаемыми параметрами процесса реали зации проекта (например, с параметрами освоенного объема), то после начала реализации проекта (причины «выжидания» примерно до 20% его завершения очевидны, хотя и эта величина может быть предметом отдельного исследования) появляется возможность на основании наблюдаемого хода его реализации «восстановить» истинное значение состояния природы. Такая примитивная иден тификация позволяет полностью устранить неопределенность и при необходимости оптимизировать выполнение оставшейся части проекта уже в условиях полной информированности.

Итак, описанный подход справедлив в предположении, что со стояние природы не изменяется в течение всего времени выполне ния проекта. Возможность использования оценок (23)-(24) допол нительно требует линейной зависимости между объемом и ресурсами, а также - постоянства количества ресурсов во времени.

Иными словами, требуется «стационарность» условий, в которых выполняется проект. Быть может, такая стационарность и имеет место при реализации оборонных проектов в США, однако относи тельно современных российских условий подобные предположения вызывают, мягко говоря, подозрения в их обоснованности, что объясняет актуальность разработки методики освоенного объема, которая могла бы эффективно использоваться в оперативном управлении проектами в условиях современной социально экономической ситуации. Кроме того, необходимо учитывать активность участников проекта, то есть разрабатывать механизмы управления, оперирующие показателями освоенного объема и побуждающие участников проекта к сообщению достоверной информации, выбору действий, совпадающих с планами, назначае мыми руководством проекта и т.д.

Тем не менее, уже имеющийся на сегодняшний день опыт ис пользования методики освоенного объема свидетельствует, что используемый в ней набор показателей (показатели освоенного объема) является информативным1 и в ряде случаев (см., например, условия выше) достаточным для принятия эффективных управлен ческих решений по управлению проектами. Основными преимуще ствами методики освоенного объема является то, что она оперирует теми же показатели, что и руководитель проекта (который делает это формально или интуитивно), достаточно проста в использова нии и, что самое главное – позволяет принимать решения в реаль ном режиме времени.

Последнее обстоятельство является чрезвычайно существен ным по следующим причинам. Хорошо развитые на сегодняшний день теоретические модели сетевого планирования и управления (СПУ) обладают высокой вычислительной сложностью и требуют для своего использования большого объема информации и доста точных резервов времени. Следствием этого является использова ние СПУ на этапе планирования, например, при разработке сетево го (ресурсного, календарного и др.) графика проекта до начала его Набор переменных, фигурирующих в методике освоенного объема, с одной стороны невелик и соответствует используемым на практике показателям, а с другой стороны – несет в себе достаточную информа цию о текущем состоянии проекта, для, по крайней мере, первичного анализа.

реализации. В ходе реализации проекта, когда ограничены как информация, так и время принятия решений, необходимо прини мать решения в реальном времени на основе имеющейся информа ции. В качестве такой информации можно использовать показатели освоенного объема. Для минимизации времени принятия решений необходима разработка готовых алгоритмов и процедур обработки информации, прогнозирования, генерации и оценке вариантов и т.д.

Поэтому при создании методов идентификации, прогнозирова ния и оперативного управления (см. таблицу 1) необходимо ориен тироваться на включение соответствующего инструментария в существующие, модифицируемые и вновь создаваемые комплексы прикладных программ по управлению проектами. Исходя из выше сказанного в ходе дальнейшего изложения материала настоящей работы мы будем стремиться либо сводить рассматриваемые задачи управления к уже известным (для которых существуют эффектив ные методы и алгоритмы решения, готовые к программной реали зации и не требующие дополнительного исследования с точки зрения специфики изучаемой области), либо описывать модели и механизмы в виде, максимально приближенном к требуемому для использования в прикладных моделях.

1.2. Общая постановка задачи оперативного управления проектом Предположим, что в рамках имеющейся информированности руководителя проекта – центра – он обладает достоверной инфор мацией обо всех существенных параметрах, то есть условно можно считать, что функционирование системы происходит в условиях полной информированности [15, 17, 19, 22, 78]. Исследуем в рамках этого предположения избыточность приведенной в разделе 1. системы показателей освоенного объема.

Даже краткое рассмотрение частных случаев (см. пример 1) свидетельствует, что набор показателей освоенного объема (основ ных и производных) является избыточным как с содержательной (в рамках рассматриваемой модели не всегда ясны содержательные трактовки различий между фактическими и освоенными затратами, а также между фактическим и освоенным объемом), так и с фор мальной (некоторые производные показатели являются комбинаци ей других основных или производных показателей и т.д.) точек зрения. Поэтому введем следующий минимальный1 набор показа телей освоенного объема (см. рисунок 9), которые используются ниже в настоящей работе.

Основные показатели освоенного объема:

C0 – планируемые суммарные затраты на проект (TB);

T0 – планируемый срок завершения проекта;

X0 – суммарный объем работ по проекту;

c0(t) – планируемая динамика затрат (BCWS);

c(t) – фактическая динамика затрат (ACWP);

x0(t) – планируемая динамика объемов работ (BQWS);

x(t) – освоенный объем (BQWP);

T – фактический срок окончания проекта;

C – фактические суммарные затраты на проект (EAC – Estimate At Complete).

Производные показатели освоенного объема:

с(t) = c0(t) - c(t) - разность между плановыми и фактическими затратами;

x(t) = x0(t) - x(t) - разность между плановым и освоенным объ емом2;

(t) = x(t) / x0(t) – показатель освоенного объема, характеризует выполнение плана по объему;

(t) = c(t) / c0(t) – показатель динамики затрат, характеризует соответствие поступления средств директивному графику;

(t) = x(t) / c(t) – эффективность использования средств3;

- (t) = t - c0 (c(t)) – текущая задержка по затратам;

с - (t) = t - x0 (x(t)) – текущая задержка по объему;

x e0 = X0 / C0 – плановая эффективность проекта в целом;

e0(t) = x0(t) / c0(t) = (t) (t) / (t) – плановая эффективность ис пользования средств;

Условно можно считать, что освоенные затраты могут быть рассчи таны по освоенному объему (см. подробности ниже).

По четырем независимым переменным с учетом размерности можно определить две независимых их разности.

По четырем независимым переменным можно определить три их независимых отношения.

e = X / C – фактическая эффективность проекта в целом.

Помимо перечисленных показателей освоенного объема мо дель проекта должна включать в себя оператор G( ), связывающий объем с затратами и отражающий «технологию» использования ресурсов.

c(t)/C0 – фактические затраты C / C 100% c0(t)/C0 – планируемые затраты x0(t)/X0 – план по объему x(t)/X0 – освоенный объем t (t) t T x T (t) c Рис. 9. Пример динамики основных показателей освоенного объема Докажем, что введенная система показателей освоенного объ ема включает в себя используемую зарубежными авторами систему показателей (см. ее описание во введении) как частный случай.

Пусть x = kc, где k – коэффициент интенсивности (в примере использовалось уравнение dx/dt = ku, где u = dc/dt). Получаем, что:

SPI = (t);

CPI = (t) / k;

EAC = c(t) + (C0 – ce(t)) / CPI = c(t) + (X0 – x(t)) / (t), то есть в случае линейной связи между объемом и ресурсами соот ветствие полное (с точностью до линейного преобразования).

В рамках рассматриваемой модели задача управления проек том включает в себя задачу планирования, решаемую до начала реализации проекта, и задачу оперативного управления - выработки оперативных управляющих воздействий в ходе реализации проекта.

Задача планирования заключается в определении объема проекта X0, плановых значений затрат с0(t), объема x0(t) и продолжительно сти проекта T0 при известной «модели проекта» G0( );

при этом C0 = c0(T0), x0(T0) = X0. Задача планирования рассматривается в разделе 1.3 настоящей работы, поэтому перейдем к рассмотрению общей постановки задачи оперативного управления проектом, которая включает задачи идентификации, прогнозирования и соб ственно управления.

На рисунке 10 изображена структура системы оперативного управления проектом в рамках модели освоенного объема. Прямо угольниками отражены реальный проект и его модель. Входом модели проекта является плановая зависимость затрат от времени c0(t), выходом – плановая зависимость объема от времени x0(t).

Входом реального проекта является фактическая зависимость затрат от времени c(t), выходом – величина освоенного объема x(t).

Как отмечалось выше, несовпадение: x(t) x0(t) может быть вызва но следующими причинами: внешней – c(t) c0(t) и/или внутрен ней – G( ) G0( ).

Следовательно, первой задачей идентификации (обозначенной «И1» на рисунке 10), которую можно также рассматривать и как задачу прогнозирования, является задача оценки зависимости фактических затрат от времени на основании сравнения наблюдае мых значений фактических и плановых затрат.

Если представить, что на вход модели проекта подаются не плановые, а фактические затраты, то, зная оператор G0( ), можно определить следующую зависимость от времени: x (t) = G0(c(t)), сравнение которой с плановой зависимостью x0(t) может служить исходными данными для решения второй задачи идентификации (обозначенной «И2» на рисунке 10) – задачи идентификации собст ~ венно модели проекта, то есть «уточнения» G (, ) (см. двойную ~ линию на рисунке 10), G (, 0) = G0, соответствующего оператора ~ (индекс “ ” в операторе G присутствует для того, чтобы подчерк нуть зависимость от времени, то есть в зависимости от продолжи тельности имеющейся истории наблюдений за время [0;

] модель может изменяться).

МОДЕЛЬ ПРОЕКТА x0(t) c0(t) G0( ) x (t) G0( ) ~ ~ x (t’) G(, ) G0( ) И1 ~ И c (t’) ПРОГНОЗ УПРАВЛЕНИЕ x(t) c(t) РЕАЛЬНЫЙ ПРОЕКТ Рис. 10. Структура системы оперативного управления проектом Итак, возникают следующие задачи идентификации:

И1. В момент времени 0 на основании истории наблюдений ~ {c(t), c0(t)}t [0;

] определить «прогноз» затрат c (t’, ) для t’ >.

И2. В момент времени 0 на основании истории наблюдений {c(t), c0(t), x0(t), x(t), x (t)}t [0;

] идентифицировать проект, то есть ~ построит адекватную ему модель G (, ).

Решив обе задачи идентификации, то есть имея в своем распо ~ ~ ряжении зависимости c (t, ) и G (, ), можно в момент времени 0 решить задачу прогнозирования, то есть сделать прогноз ~ значения освоенного объема x (t’, ) для моментов времени t’ > :

~ ~ ~ x (t’, ) = G ( c (t’, ), ).

Необходимо принимать во внимание, что для решения задач идентификации и прогнозирования могут использоваться не только данные о ходе реализации рассматриваемого проекта, но и инфор мация о реализации других аналогичных проектов.

Сделав маленькое отступление, отметим, что в рамках рас сматриваемого подхода легко показать, что введенная в настоящем разделе система показателей освоенного объема является мини мально необходимой для полного описания проекта в рамках мето дики освоенного объема. Для этого достаточно доказать, что пока затели фактического объема и освоенных затрат (присутствующие в «расширенном» списке показателей освоенного объема, приве денном во введении и в разделе 1.1) не являются независимыми и могут быть выражены, через фактические и плановые затраты, а также освоенный и плановый объем. Действительно, фактический объем может интерпретироваться как объем, который был бы освоен, если бы присутствовала только внешняя причина, а внут ренняя причина отсутствовала, то есть фактический объем есть ни что иное, как x (t) = G0(c(t)). Освоенные затраты ce(t) соответству ют тем затратам, которые понадобились бы для того, чтобы показа тель освоенного объема для реального проекта равнялся заданной ~ величине x(t), то есть G (сe(t)) = x(t).

Решив задачи идентификации и прогнозирования, то есть имея ~ в момент времени в своем распоряжении прогнозы c (t’, ) и ~ x (t’, ), для t’ >, и зная директивные (плановые) графики затрат и объема, можно решать задачи оперативного управления проек том – выработки таких управляющих воздействий, которые кор ректировали бы ход реализации проекта в нужную (с точки зрения руководителя проекта – см. более подробно ниже) сторону.

Рассмотрим более подробно задачи идентификации, прогноза и оперативного управления. Отметим, что в настоящей работе при анализе и синтезе моделей оперативного управления проектами мы будем следовать следующему общему принципу. Так как конечная цель всех разрабатываемых в рамках методики освоенного объема методов и механизмов оперативного управления заключается в повышении эффективности управления реальными проектами, то критерием необходимости изучения той или иной частной задачи управления является неизвестность на сегодняшний день возмож ности сведения ее к уже исследованным, например, оптимизацион ным и другим задачам, методы решения которых могут быть алго ритмизированы, то есть использованы в методиках или прикладных компьютерных программах, ориентированных на использование руководителями проектов. Такая практическая направленность четко выделяет необходимую степень детализации при исследова нии тех или иных задач управления, возникающих при описании проекта показателями освоенного объема. Другими словами, в рамках используемого подхода частная задача синтеза определен ного механизма управления может считаться решенной, если для нее сформулированы либо алгоритм решения, либо приведена ссылка на метод решения эквивалентной ей задачи, которые могут быть использованы в прикладных методиках и алгоритмах, причем создание последних, при наличии подробно изученных с теорети ческой точки зрения методах решения, может рассматриваться как инженерная задача.

Первая задача идентификации (И1), которую можно также рас сматривать как задачу прогнозирования значений фактических затрат, заключается в оценке будущей зависимости фактических затрат от времени на основании сравнения наблюдаемых значений фактических и плановых затрат.

Итак, имеются два временных ряда: c0(t) и c(t), t. Прогноз ~ c (t’, ), t’ >, может быть получен двумя путями. Первый путь, не учитывающий специфику рассматриваемой задачи, заключается в использовании методов «технического» анализа (статистический анализ временных рядов [2, 51, 72, 99]) для оценки величины ~ c (t’, ), t’ >, только на основании наблюдаемых реализаций c(t), t. Второй путь – построение модели, отражающей связь между плановыми и фактическими затратами и, быть может, учитываю щей информацию о результатах реализации аналогичных завер шившихся проектов, и адаптивная идентификация этой модели на основании имеющих статистических данных. Иллюстрацией второ го пути может служить введенное в примере 1 предположение (модель) о постоянстве ресурсов, то есть затрат в единицу времени.

Тогда однократное наблюдение фактических значений ресурсов позволяет однозначно идентифицировать модель. Таким образом, для прогнозирования будущих значений фактических затрат ~ c (t’, ), t’ >, могут быть использованы (то есть, «зашиты» в соответствующую компьютерную программу без существенной адаптации) известные методы и алгоритмы прогнозирования и идентификации [2, 74, 97-99].

Аналогичным образом обстоит дело и со второй задачей иден тификации (И2) - построения в момент времени 0 адекватной ~ модели проекта G (, ) на основании истории наблюдений {c(t), c0(t), x0(t), x(t), x (t)}t [0;

], для решения которой в теории адаптивного управления и идентификации существуют хорошо развитые методы решения [98, 99 и др.]. В рамках примера 1 иден тификация проекта означала определение коэффициентов интен сивности на основании однократного наблюдения (которое оказы валось достаточным) параметров фактической реализации проекта.

При известном прогнозе фактических затрат и имеющейся мо дели проекта решение задачи прогнозирования будущих значений показателей освоенного объема тривиально – оно заключается в ~ ~ подстановке прогноза c (t’, ) в модель G (, ), то есть ~ ~ ~ x (t’, ) = G ( c (t’, ), ), t’ > :

Несколько сложнее обстоит дело с задачей собственно управ ления – поиска оптимальных управляющих воздействий на основа нии результатов решения задач идентификации и прогнозирования.

Этот класс задач, как и задачи планирования, заслуживает отдель ного исследования, проводимого в разделе 1.3 настоящей работы.

Таким образом, для решения задач идентификации и прогно зирования в рамках методики освоенного объема на сегодняшний день существуют хорошо развитые методы адаптивного управле ния, идентификации и прогнозирования. Другими словами, возни кающие при использовании методики освоенного объема задачи идентификации и прогнозирования, естественно, обладают собст венной спецификой, однако, специфичны они не настолько, чтобы к ним были неприменимы известные методы и алгоритмы решения.

1.3. Планирование и оперативное управление проектом в условиях полной информированности Сохраним введенное в начале раздела 1.2 предположение о том, что руководитель проекта – центр – в рамках своей информи рованности обладает достоверной информацией.

Часть показателей освоенного объема, введенных в разделе 1.2, может рассматриваться как управляющие параметры (ими могут, например, быть плановые затраты, интенсивности и т.д.). Осталь ные показатели являются при этом зависимыми, то есть при фикси рованной модели проекта однозначно определяемыми значениями управляющих параметров (например, если плановые затраты ин терпретируются как управляющий параметр, то при модели проек та G0( ) плановое значение объема является зависимым показате лем: x0(t) = G0(c0(t)) и т.д.). В зависимости от рассматриваемой модели (то есть в зависимости от рассматриваемой задачи управле ния) одни и те же показатели могут быть либо управляющими, либо зависимыми.

Пусть известны ограничения на значения управляющих пара метров и задан критерий эффективности управления1, зависящий как от управляющих, так и от зависимых параметров. Тогда на качественном уровне задачу управления можно сформулировать следующим образом: выбрать такие допустимые значения управ ляющих параметров, которые доставляли бы экстремум критерию эффективности управления (в частном случае – максимизировали эффективность проекта).

Задача планирования, являющаяся частным случаем сформу лированной выше задачи управления, решается до начала реализа ции проекта и заключается в определении на основании всей имеющейся на данный момент информации оптимальных плановых значений управляющих параметров для t’ 0.

Задача оперативного управления, также являющаяся частным случаем задачи управления, решается в ходе реализации проекта и заключается в определении на основании всей имеющейся на дан ный момент информации оптимальных текущих и будущих значе Следует различать эффективность проекта, определяемую как отно шение объема к затратам (см. выше), и эффективность управления.

ний управляющих параметров, то есть оптимальных плановых значений управляющих параметров для t’.

Таким образом, задачи планирования и оперативного управле ния являются частными случаями одной и той же задачи управле ния, отличающимися лишь той информацией, которая имеется на момент принятия решений.

Поясним последнее утверждение более подробно. При реше нии задачи планирования имеется информация об ограничениях на допустимые значения плановых показателей и модель проекта. При решении задачи оперативного управления имеется информация об ограничениях на допустимые значения показателей освоенного объема и модель проекта, скорректированные в соответствии с решениями соответствующих задач идентификации и прогнозиро вания, описанными в разделе 1.2, и учитывающие историю реали зации проекта.

Коль скоро установлена качественная эквивалентность задач планирования и оперативного управления, достаточно рассмотреть подробно одну из них, поэтому ниже в настоящем разделе мы по умолчанию будем подразумевать, что формулируемые и решаемые задачи могут интерпретироваться двояко. Более того, качественно основной результат настоящего раздела заключается в следующем:

при агрегированном представлении проекта, то есть рассмотрении проекта как единого целого в рамках модели, описанной в разделе 1.2, решение задач планирования и оперативного управления в условиях полной информированности заключается в сведении к известным оптимизационным задачам, методы и алгоритмы реше ния которых хорошо известны.

Обоснуем это утверждение.

Важную часть показателей освоенного объема составляют плановые показатели: планируемая длительность проекта, плани руемая динамика затрат, плановые значения величины освоенного объема. Поэтому рассмотрим возможные постановки задачи плани рования.

В разделах 1.1-1.2 была введена следующая взаимосвязь между освоенным объемом и количеством ресурса (напомним, что коли чество ресурса – объем средств – затрат, которые вкладываются в t единицу времени: u(t) = c’(t), c(t) = u( ) d ):

t T dx(t) (1) = w(u(t)), x(t) = w(u( )) d, w(u( )) d = X0, dt 0 или в более общем случае:

dx(t) (2) = w(x(t), u(t), t), x(0) = 0, x(T) = X0.

dt Соотношения (1) или (2) определяют модель проекта, то есть в задаче планирования ими косвенно задается оператор G0( ), а в ~ задаче оперативного управления – оператор G (, ), причем в последнем случае нулевой момент времени в (1) или (2) заменяется на момент времени. Во избежании путаницы, а также для того, чтобы приводимые результаты с минимальной адаптацией были применимы и к задаче планирования, и к задаче оперативного управления, будем рассматривать только задачу планирования, помня, что переход к задаче оперативного управления в момент времени осуществляется следующей формальной заменой:

t dx(t) ~ ~ ~ u(t) = c’(t), c(t) = с( ) + u( y, ) dy, = w(u(t, ), ), dt t T ~ ~ ~ ~ x(t) = x( ) + w(u( y, ), ) dy, t, x( ) + w(u( y, ), ) dy = X0, dx(t) ~ ~ или в более общем случае: = w(x(t), u(t, ), t, ), dt ~ x(t= ) = x( ), x(T) = X0, где w(, ) - результат идентификации ' ~ ~ модели проекта в момент времени, u (, ) = c (, ) – прогноз динамики финансовых ресурсов в момент времени. Кроме того, отметим, что в задаче планирования приведенные соотношения связывают плановые показатели, а в задаче оперативного управле ния – фактические или прогнозные. Однако, так как мы установили эквивалентность формулировок этих задач, ниже будем опускать нижние и верхние индексы, соответствующие плановым или про гнозным значениям.

Аналогичным образом учитывается и другая, поступившая до момента времени информация1. Например, если стало известно, что завершению проекта соответствует значение суммарного объе ма X’, отличное от X0, то учет этой информации приведет к замене в приведенных выше для задачи оперативного управления соотно шениях старой величины суммарного объема на новую.

Предположим, что ограничения на ресурсы и интенсивности заданы в следующем виде:

(3) c(t), (4) u(t) U, (5) w( ) W, где, U и W – классы возможных значений соответственно затрат, ресурсов и интенсивностей.

Возможны следующие постановки задач планирования.

Пусть K(x0( ), c0( ), T0) - некоторый критерий эффективности2.

Тогда в общем случае задача планирования заключается в выборе допустимых с точки зрения (1)-(5) плановых значений {x0( ), c0( ), T0}, при которых эффективность K(x0( ), c0( ), T0) была бы максимальна:

(6) K(x0( ), c0( ), T0) max.

(1)-(5) Задача (6), несмотря на свою общность, на практике редко формулируется и решается именно в приведенном виде. Чаще возникает необходимость решать более частные задачи планирова ния, описываемые ниже. Так как считается, что суммарный объем проекта фиксирован (задан извне), то возможна оптимизация таких характеристик как время выполнения проекта и финансовые пока затели.

Следует признать, что задача минимизации времени выполне ния проекта может рассматриваться (с формальной точки зрения) как частный случай задачи оптимизации более общих, например, Самостоятельный интерес представляет задача определения опти мальных моментов получения информации, если предположить, что получение информации связано с определенными затратами. Рассмотре ние этой задачи выходит за рамки настоящей работы. Подходы к реше нию близких задач обсуждаются в [59, 71, 79, 86, 99].

Здесь и далее, если не оговорено особо, под эффективностью будем понимать эффективность управления, а не эффективность проекта.

финансовых показателей. Тем не менее, ее выделение в качестве самостоятельной задачи оправданно с содержательной точки зре ния, кроме того задача минимизации времени выполнения проекта является традиционной (даже хрестоматийной) задачей управления проектами.

1. Задача минимизации времени выполнения проекта. Рассмот рим несколько случаев.

Случай 1.1. Задано бюджетное ограничение с0(t), требуется найти допустимую зависимость интенсивности w( ) W от време ни:

(7) T min, w()W T ' при ограничении w(u0 ( )) d = X0, u0(t) = c0 (t) или (2).

Введем следующее множество:

W = { w (t) = w(u0(t)) | w( ) W}, то есть множество таких зависимостей интенсивности от времени, которые являются допустимыми при известных плановых затратах.

Задача: T min, dx(t)/dt = w (t), x(0)= 0, x(T) = X0 является wW хорошо известной задачей о быстродействии [12, 59, 71]. Из прин ципа максимума следует, что оптимальным является следующая (легко угадываемая даже интуитивно) зависимость интенсивности * от времени: w (t) = max w (t). Содержательно, интенсивность w(t)W должна быть максимально возможной при заданном количестве ресурса.

Более сложные оптимальные решения могут появляться в слу чае, когда интенсивность зависит от освоенного объема: T min, wW dx(t) = w(x(t),u0 (t), t), x(0) = 0, x(T) = X0.

dt Случай 1.2. Задана интенсивность w0(t) и ограничения на за траты, требуется найти допустимую зависимость ресурсов (и, следовательно, затрат) от времени:

(8) T min, u()U при ограничении dx(t)/dt = w0(u(t)), x(0)= 0, x(T) = X0 или (2).

Задача (8) является канонической задачей о быстродействии [12, 59, 71].

Возможно объединение случаев 1.1. и 1.2., то есть поиск одно временно допустимых зависимостей и затрат, и интенсивностей, минимизирующих время выполнения проекта. Получающаяся при этом задача решается следующим образом.

Рассмотрим исходную систему уравнений:

c(t) = u(t) x(t) = w(u(t)) с ограничениями:

u U = {u(t) | t 0 0 u(t) umax(t)}, w W = {w(t) | u U 0 w(t) wmax(t)}, x(0) = 0, x(T) = X0.

Пусть имеются два управляющих воздействия – плановые за траты (и, следовательно, ресурсы) и интенсивность.

Применим принцип максимума Понтрягина [12, 59] для опре деления допустимой стратегии управления, обеспечивающей ми нимум времени выполнения проекта.

Запишем гамильтониан: H = u(t) + w(u(t)). Для сопря 1 H H женных переменных имеем: 1 = - = 0, 2 = - = 0, c(t) x(t) то есть (t) = Const, (t) = Const.

1 Условие максимума гамильтониана имеет вид:

u*(t) = umax(t) Sign (t), w*(t) = wmax(t) Sign (t), 1 то есть оптимальной является следующая стратегия: независимо от объема проекта, все время следует использовать максимально возможное количество ресурса с максимально возможной интен сивностью. Содержательные интерпретации такого решения оче видны.

2. Задача максимизации финансовой эффективности. Под фи нансовой эффективностью проекта (при фиксированном его объе ме) будем понимать либо суммарные затраты на проект (быть может, приведенные к текущему или некоторому будущему) мо менту времени), либо упущенную выгоду, то есть финансовый показатель зависящий от суммарных затрат на проект, времени его окончания, штрафов за задержку времени выполнения проекта и т.д. В общем случае минимизируемой величиной является некото рый функционал KC = KC(c0(t), T) (который может задаваться как интеграл от плановой траектории затрат и, быть может, освоенного объема) от плановой динамики затрат или функционал KU = KU(u0(t), T) от плановой динамики потребления финансовых ресурсов.

Как и при минимизации времени выполнения проекта возмож ны несколько случаев.

Случай 2.1. Задано (плановое) бюджетное ограничение с0(t), требуется найти допустимую зависимость интенсивности от време ни, такую, что:

(9) KC(c0(t), T) min, w()W, T T ' при ограничении w(u0 ( )) d =X0, u0(t)= c0 (t) или (2).

Задача (9) является задачей терминального управления [12, 59, 71] (метод ее сведения к каноническому виду аналогичен использованному при рассмотрении случая 1.1).

Случай 2.2. Задана интенсивность w0(t) и ограничение на за траты, требуется найти допустимую зависимость ресурсов (и, следовательно, затрат) от времени:

(10) KC(c(t), T) min, c(), T T при ограничении w0 (u( )) d = X0, u(t) = c’(t) или (2).

Задача (10) может также интерпретироваться, например, как следующая задача финансового планирования. Пусть проект вы полняется за счет заемных средств (кредита) с процентной ставкой, причем выплаты по кредиту производятся сразу по завершении проекта, то есть в момент времени T. Тогда задача финансового планирования заключается в определении допустимого графика заимствования средств u(t) с учетом процентов по кредиту (отра жаемых дисконтирующим множителем ):

T KC(u(t), T) = u(t) dt min, e (T -t) u()U, T dx(t)/dt = w0(u(t)), x(0) = 0, x(T) = X0.

Сформулированная задача финансового планирования являет ся задачей терминального управления [12, 59, 71].

Таким образом, в условиях полной информированности при рассмотрении проекта как единого целого задача планирования (определения оптимальных плановых значений переменных, кото рые можно в рамках рассматриваемой модели или задачи отнести к управляющим) сводится к известным оптимизационным задачам (задачам оптимального управления). Проведенное в настоящем разделе рассмотрение позволяет сделать несколько важных мето дологических выводов.

Во-первых, задача планирования рассматривалась в предполо жении, что плановые значения всех показателей определяются до момента начала реализации проекта. В то же время, если в ходе реализации проекта обнаруживается отклонение фактических значений показателей освоенного объема от плановых или измене ние суммарного объема и т.д., то задачи (7)-(10) могут решаться «заново» с учетом имеющейся информации. При этом техника решения останется без изменений, изменятся лишь «начальное» значение времени (оно будет равно не нулевому, а текущему), «начальное» значение освоенного объема (оно также будет равно не нулевому, а текущему) и т.д. Другими словами, задачи оптими зации параметров проекта (задачи оптимального планирования), рассмотренные в настоящем разделе, без значительных модифика ций могут решаться в ходе реализации проекта (как задачи опера тивного управления) с учетом накопленной информации.

Второй вывод заключается в следующем. Если на этапе плани рования имелась неопределенность относительно состояния приро ды, то в ходе реализации проекта при решении задач оперативного управления эта неопределенность может снижаться за счет имею щейся информации об истории реализации проекта. Для этого при решении соответствующих оптимизационных задач может исполь зоваться хорошо развитая техника идентификации [62, 99], в част ности – методы стохастической аппроксимации, дифференциаль ных и повторяющихся игр и т.д. [73, 83, 97, 98, 143] (см. также раздел 1.2).

И, наконец, в третьих, в качестве гипотезы можно предполо жить, что при представлении проекта в виде комплекса зависимых операций оптимизационные задачи для показателей освоенного объема операций могут формулироваться и решаться по аналогии с рассмотренными выше задачами. В пользу этой гипотезы, в частно сти, говорит тот факт, что в теории сетевого планирования и управ ления на сегодняшний день накоплен богатый опыт теоретического решения и практической реализации (в виде прикладных компью терных программ) подобного рода задач. Более подробно задачи агрегирования (при представлении проекта в виде комплекса взаи мосвязанных операций) показателей освоенного объема рассматри ваются в разделе 1.4.

Поэтому можно считать, что в рамках рассматриваемой модели для задач планирования и оперативного управления проектом в условиях полной информированности существуют эффективные методы решения1.

1.4. Методы агрегирования показателей освоенного объема В разделах 1.1–1.3 рассматривалось описание проекта в целом в терминах показателей освоенного объема. Агрегированное опи сание проекта в виде одной операции является первым шагом в создании практически любой [8, 9, 13, 14, 18, 20, 23, 35, 44, 57 и др.] модели управления проектом. Однако большинство реальных проектов имеют сложную структуру и включают множество опера ций, зависимости между которыми могут иметь достаточно слож ный вид. Различные представления сложных проектов в виде ком плексов зависимых операций можно найти в [14, 37, 39 и др.].

Более того, появление и интенсивное развитие сетевого планирова ния и управления (СПУ) обусловлено именно необходимостью учета зависимостей между операциями.

На сегодняшний день в теории СПУ накоплен богатый опыт анализа и синтеза сетевых моделей проектов (начиная от простей ших, учитывающих технологические связи при оптимизации вре мени выполнения проекта [20, 25 и др.], и заканчивая обобщенны ми сетевыми моделями, представляющими мощный и гибко настраиваемый инструмент анализа, позволяющий учитывать Отдельный вопрос заключается в том, насколько полно на сегодняшний день эти методы реализованы в существующих методических и про граммных средствах управления проектами, однако исследование этого вопроса выходит за рамки настоящей работы (см. также раздел 3.1).

множество типов зависимостей, учитывать неопределенность и решать широкий спектр оптимизационных задач [33, 34]), которые реализованы в виде пакетов прикладных программ.

Одной из основных задач, решаемых при построении модели проекта является задача агрегирования, то есть задача представле ния комплекса операций в виде комплекса с меньшим числом операций. Необходимость агрегирования очевидна – в крупных проектах менеджеры высшего звена не имеют возможности обра батывать (даже в условиях автоматизации) информацию о всех деталях выполнения отдельных операций нижнего уровня. Однако агрегирование (как любое сжатие информации [8, 32, 65, 76]) при водит к потерям, которые отрицательно сказываются на эффектив ности управления. Поэтому задачу агрегирования качественно можно сформулировать как задачу поиска оптимального (или рационального) компромисса между уменьшением информацион ной нагрузки на управляющие органы и снижением эффективности управления, вызванным недостаточностью информации. Общие подходы к решению проблем агрегирования при решении задач управления иерархическими системами рассмотрены в [76]. В настоящем разделе рассматриваются детальное и агрегированное описание комплекса операций в терминах показателей освоенного объема, формулируется проблема агрегирования и предлагаются подходы к ее решению для ряда частных случаев.

Так как и проект в целом, и каждая из составляющих его опе раций могут быть описаны основными и производными показате лями освоенного объема (см. раздел 1.2), то основной акцент сле дует сделать на установление взаимосвязи между этими показателями. Поэтому предположим, что проект состоит из n операций (см. рисунок 11), каждая из которых характеризуется следующими основными показателями освоенного объема:

X0i – суммарный объем i-ой операции, i I = {1, 2, …, n};

C0i – планируемые суммарные затраты на операцию;

T0Н – планируемое время начала операции;

i К T0i – планируемое время окончания операции;

К Н T0i = T0i - T0i - планируемая продолжительность операции;

x0i(t) – планируемая динамика объемов работ по операции;

c0i(t) – планируемая динамика затрат на операцию;

TiН – фактическое время начала операции;

TiК – фактическое время окончания операции;

xi(t) - освоенный объем операции;

ci(t) – фактическая динамика затрат на операцию;

Ti = TiК - TiН - фактическая продолжительность операции;

Ci – фактические суммарные затраты на операцию.

ПРОЕКТ X0i,C0i Н T0i план К T0i X0i,Ci i-я операция 1-я операция TiН факт TiК ан X0n,C0n X01,C Н Н T0n план К T0n T01 план К T X0n,Cn X01,C TnН факт TnК T1Н факт T1К ан ан n-я операция Рис. 11. Представление проекта в виде комплекса операций Параметр операции (интенсивность): wi(ui), или в более общем случае – wi (xi (t), ui (t), t), определяет скорость изменения объема:

dxi (t) = wi ( ui (t)) или в более общем случае dt dxi (t) = wi (xi (t), ui (t), t), xi(TiН ) = 0, xi(TiК ) = X0i.

dt Все производные показатели освоенного объема для операций вводятся по аналогии с производными показателями проекта в целом (см. раздел 1.2):

сi(t) = c0i(t) – ci(t) - разность между плановыми и фактически ми затратами на операцию;

xi(t) = x0i(t) – xi(t) - разность между плановым и освоенным объемом операции;

(t) = xi(t) / x0i(t) – показатель освоенного объема, характери i зует выполнение плана по объему;

(t) = ci(t) / c0i(t) – показатель динамики затрат, характеризует i соответствие поступления средств директивному графику;

(t) = xi(t) / ci(t) – эффективность использования средств;

i (t) = t - c0i1 (ci(t)) – текущая задержка по затратам;

сi (t) = t - x0i1 (xi(t)) – текущая задержка по объему;

xi e0i = X0i / C0i – плановая эффективность операции;

e0i(t) = x0i(t) / c0i(t) = (t) (t) / (t) – плановая эффективность i i i использования средств;

ei = Xi / Ci – фактическая эффективность операции.

Агрегирование показателей освоенного объема.

При агрегировании временных (t – «физическое» время) и фи нансовых показателей проблем, как правило, не возникает:

Н T0Н = min T0i - планируемое время начала проекта (в агре i=1, n гированном описании проекта, как правило, считается, что T0Н = 0);

К T0К = max T0i - планируемое время окончания проекта;

i=1, n Н T = min TiН - фактическое время начала проекта;

i=1, n К T = max TiК - фактическое время окончания проекта;

i=1, n n C0 = C0i – планируемые суммарные затраты на проект;

i= n C = Ci – фактические суммарные затраты на проект;

i= n c0(t) = c0i(t) – планируемая динамика затрат на проект;

i= n n ' u0(t) = c0 (t) = ci'0 (t) = u0i(t) – плановая динамика по i=1 i= требления ресурсов;

n c(t) = ci(t) – фактическая динамика затрат на проект i= n n u(t) = c’(t) = ci' (t) = ui(t) – фактическая динамика по i=1 i= требления ресурсов.

Рассмотрим агрегирование показателей освоенного объема.

Введем оператор агрегирования Q( ): n 1 освоенного объе + + ма, то есть будем считать что освоенный объем проекта в целом определяется1 по освоенным объемам операций следующим обра зом: x(t) = Q(x1(t), x2(t), …, xn(t)).

Предположим, что оператор агрегирования Q() обладает сле дующими свойствами (их содержательные интерпретации очевид ны):

1. Непрерывность по всем переменным.

2. Монотонность по всем переменным.

3. Q(0, 0, …, 0) = 0, Q(X01, X02, …, X0n) = X0.

Введенные предположения о свойствах оператора агрегирова ния необременительны и им удовлетворяет множество различных операторов. Примером может служить вычисление среднего ариф метического2 агрегируемых переменных и т.д.

Следует отметить, что выбор того или иного оператора Q( ) должен быть обусловлен спецификой рассматриваемого проекта и, в первую очередь, учитывать именно ее. Другими словами, можно условно счи тать, что в каждом конкретном случае вид оператора агрегирования задан «объективно».

Использование в качестве операторов агрегирования взвешенных сумм показателей освоенного объема операций оправданно в случае, когда Пример 2. Рассмотрим описание проекта как комплекса опе раций, для которых в качестве освоенного объема используется показатель процента выполнения (см. введение): li(t) = xi(t) / X0i (L0i = 1), тогда li(TiН ) = 0, li(TiК ) = 1, i I.

Введем следующие требования, которым должен удовлетво рять оператор агрегирования процентов выполнения:

1. Непрерывность по всем переменным.

2. Монотонность по всем переменным.

3. Q(0, 0, …, 0) = 0, Q(X01, X02, …, X0n) = 1.

4. max xi(t) Q(x1(t), x2(t), …, xn(t)) min xi(t).

i=1, n i=1, n 5. Условие единогласия: y [0;

1] Q(y, y, …, y) = y.

Примерами операторов агрегирования процентов выполнения, удовлетворяющих приведенным пяти требованиям, могут служить:

вычисление максимума, минимума, взвешенных сумм (включая, естественно, вычисление среднего арифметического) и т.д., то есть все операции, которые используются для процентов выполнения (см. введение).

n n Например, если Q( ) = li, > 0, = 1, то Q( ):

i i i i =1 i = [0;

1]n [0;

1], а интенсивность выполнения проекта в целом n i определяется следующим образом: w(t) = wi(ui(t)). • X i= 0i Таким образом, следуя определению, приведенному в [4, 18, 20], под агрегированным описанием проекта будем понимать его представление в виде агрегированной операции1 объема X0 и зависимостью w(u(t)) скорости изменения освоенного объема от количества ресурсов.

работы, выполняемые в рамках различных операций однородны или, как минимум, сравнимы. А таким свойством они обладают, так как одним из принципов разработки WBS-структуры является сравнимость пакетов работ, а освоенные объемы, как правило, оцениваются именно за пакеты работ.

В более общем случае агрегированное описание проекта – его представ ление в виде комплекса с меньшим числом операций [8].

Значит, если задан оператор агрегирования, то проект в целом может описываться двумя способами. Первый способ заключается в использовании агрегированного описания, при котором связь между освоенным объемом и использованными ресурсами имеет вид:

dx(t) (1) = w( u(t)), x(TН) = 0, x(TК) = X0.

dt При этом количество ресурса, используемого в проекте в це лом равно сумме ресурсов, используемых в каждой из составляю щих его операций (см. выше):

n (2) u(t) = ui(t).

i= Второй способ – использование оператора агрегирования осво енных объемов операций для определения скорости выполнения проекта в целом:

n dx(t) Q(x1, x2,..., xn) (3) = wi(ui(t)).

dt xi i= Понятно, что эффективность управления (например, значения критериев, оптимизируемых в рамках задач оптимального управле ния, рассмотренных в разделе 1.3) в случае агрегированного описа ния проекта не выше, чем в случае детального его описания. Сле довательно, возникает вопрос – при использовании каких классов агрегированных описаний потери в эффективности управления, вызванные наличием агрегирования, будут равны нулю.

Задача идеального (по времени выполнения проекта) агрегиро вания заключается в следующем.

Пусть известны все параметры операций и заданы: оператор агрегирования Q() и класс ограничений на затраты c(t) (или класс ограничений U на количество ресурсов, выделенных для реализа ции проекта в целом). Обозначим tmin(c(t)) – минимальная продол жительность комплекса операций как решение задачи оптимально го распределения ресурсов между операциями. Обозначим Tmin(c(t)) tmin(c(t)) – минимальное время реализации проекта при представлении его в агрегированном виде.

Величина tmin (c(t)) (4) (c(t)) = 1 - [0;

1] T Tmin (c(t)) называется ошибкой агрегирования по времен выполнения проекта.

Агрегирование, при котором максимальная (по классу ограниче ний на затраты или по классу U ограничений на ресурсы) из оши бок агрегирования: = max (c(t)) равна нулю, называется иде T T c(t) альным1 в классе (в классе U).

Если нулевое значение ошибки агрегирования недостижимо, T то есть идеальное агрегирование невозможно, то задача агрегиро вания заключается в поиске допустимого оператора агрегирования, минимизирующего эту ошибку.

Аналогичным образом определяется агрегирование, идеальное с точки зрения объема ресурсов, упущенной выгоды и других критериев.

Задача идеального (по финансовым показателям) агрегирова ния заключается в следующем.

Обозначим kmax(u(t)) (kmax(w(t))) – максимальное значение кри терия k() финансовой эффективности для комплекса операций как решение задачи оптимального распределения ресурсов (интенсив ностей) – соответственно случаям 2.1 и 2.2, описанным в разделе 1.3, между операциями, Kmax(u(t)) (Kmax(w(t))) – соответствующее максимальное значение критерия финансовой эффективности проекта при представлении его в агрегированном виде. Величина Kmax (u(t)) (5) (u(t)) = 1 C kmax (u(t)) В работе [76], посвященной исследованию многоуровневых активных систем, идеальным было предложено называть агрегирование, при кото ром эффективность управления в многоуровневой АС с агрегированием по модели или по состоянию равна эффективности управления в соответ ствующей АС с полной информированностью центра о моделях активных элементов и подсистем. Таким образом, критерием “качества агрегиро вания” выступает эффективность управления.

Kmax (w(t)) ( (w(t)) = 1 - ) называется ошибкой агрегирования по C kmax (w(t)) финансовым показателям. Агрегирование, при котором максималь ная (по классу U ограничений на ресурсы или, соответственно, по классу W ограничений на интенсивности) из ошибок агрегирова ния: = max (u(t)) ( = max (w(t)) равна нулю, называется C C C C u(t)U w(t)W идеальным в классе U (соответственно, в классе W).

Подчеркнем, что утверждение о том, что некоторый оператор агрегирования является идеальным требует конкретизации: во первых, ошибка агрегирования по какому из параметров (время, ресурсы и т.д.) равна нулю, и, во-вторых, при каком классе ограни чений (на ресурсы, время и т.д.) рассматривается агрегирование.

Исследованию проблемы идеального агрегирования в литера туре по управлению проектами и СПУ посвящено значительное число работ [8, 18, 23, 96]. Опишем кратко некоторые из результа тов.

Предположим, что операции технологически независимы, то есть каждая из них может начинаться в любой момент времени, независимо от состояния других операций, и рассмотрим задачу распределения ресурсов между операциями с целью минимизации времени выполнения проекта.

Если количество ресурса постоянно во времени n ( (t) = Umax) и wi( ) – вогнутые функции, то:

u i i = - каждая операция выполняется с постоянным уровнем ресур са (постоянной скоростью);

- все операции заканчиваются одновременно [13, 14].

* Если обозначить wi - оптимальные (постоянные) скорости * операций, то получим, что wi = X0i / T, ui = wi-1 (X0i / T), то есть минимальное время выполнения проекта определяется из следую щего уравнения:

n * (6) wi-1(wi ) = Umax.

i= n В [18] рассмотрен случай, когда (t) Umax(t), где Umax(t) – u i i= кусочно-постоянная функция. Там же показано, что, если функции интенсивностей не являются вогнутыми, то возможно построение множества, являющегося выпуклой оболочки множества пар «ре сурсы - интенсивность», граница которого – вогнутая функция, для которой применимы приведенные выше результаты. В [14, 18] доказано, что идеальное агрегирование возможно, если wi( ) – степенные функции1.

Таким образом, в рамках методики освоенного объема возни кают несколько классов задач агрегирования показателя освоенного объема по различным критериям – времени реализации проекта и финансовым показателям.

В заключение настоящей главы отметим, что до сих пор, рас сматривая проект в целом, мы стояли на позициях оперирующей стороны – руководителя проекта, то есть учитывали в рассматри ваемых моделях ту информацию, которой он обладает на момент принятия решений. При этом считалось, что основные показатели освоенного объема связаны некоторыми соотношениями (системой дифференциальных уравнений и т.д.), то есть сам проект с точки зрения руководителя проекта описывался как пассивная система.

На практике дело обстоит сложнее. Участники проекта – сам руководитель проекта, исполнители, поставщики и др. обладают свойством активности, то есть действуют в соответствии с собст венными целями и интересами. Поэтому в модели проекта, помимо неопределенности о состоянии природы (которая может учиты ваться и устраняться полностью или частично путем применения процедур идентификации, вычисления гарантированных и/или ожидаемых значений в рамках пассивной модели), необходимо учитывать свойство активности управляющего органа и управляе мых субъектов.

Перечисленные проблемы и задачи обуславливают последова тельность дальнейшего изложения материала настоящей работы.

Следует отметить, что случай степенных интенсивностей является хрестоматийным примером, в котором агрегирование является идеаль ным [8, 9, 18, 21, 76, 110].

Умея решать задачи оперативного управления для проекта в целом и для комплекса операций (результаты первой главы), а также оценив потери эффективности, вызванные переходом к агрегированному описанию проекта в рамках методики освоенного объема, можно рассматривать задачу синтеза механизмов опера тивного управления проектами с учетом факторов активности участников и агрегированного описания, что и делается во второй главе настоящей работы.

Так как одной из важнейших характеристик проекта является время его завершения, то во второй главе в основном рассматрива ются такие механизмы оперативного управления проектами, в которых основной акцент делается именно на снижение продолжи тельности проекта, точнее – на обеспечение совпадения его плано вой и фактической продолжительности. С этой целью рассматри ваются задачи оценки времени завершения проекта на основании мнений экспертов (механизмы экспертизы – раздел 2.1);

задачи мотивации исполнителей, то есть побуждения их к сокращению продолжительности проекта, в том числе с учетом неопределенно сти того или иного типа или вида (механизмы стимулирования – раздел 2.2);

задачи определения оптимальных значений параметров проекта (в том числе – параметров системы стимулирования) на основании информации, сообщаемой исполнителями руководителю проекта (механизмы планирования – раздел 2.3).

Глава 2. Механизмы оперативного управления проектами Во второй главе настоящей работы рассматриваются три об ширных класса механизмов управления проектами, учитывающих активность как управляющего органа, так и управляемых субъек тов, и нацеленных, в основном, на оптимизацию такой важнейшей характеристики проекта как фактическое время1 его завершения.

Первым классом механизмов, рассматриваемым в разделе 2.1, являются механизмы получения информации о возможной про должительности проекта от лиц (экспертов), обладающих большей информацией по этому вопросу, чем руководитель проекта. Если эксперты заинтересованы в результатах экспертизы, то возникает проблема манипулируемости (целенаправленного искажения ими сообщаемой информации), решение которой для случая сообщения экспертами скалярных оценок описано в [15]. Однако, во многих случаях эксперту проще сформулировать свое мнение в нечетком виде, поэтому ниже рассматриваются нечеткие механизмы актив ной экспертизы, оперирующие нечеткими мнениями экспертов.

Вторым классом механизмов, рассматриваемым в разделе 2.2, являются механизмы стимулирования, в которых решается задача синтеза поощрений исполнителей, при которых они были бы готовы сократить продолжительность проекта на оптимальную с точки зрения проект-менеджера (с учетом затрат на стимулирова ние исполнителей) величину. Помимо изучения детерминирован ных моделей, то есть моделей проектов (рассматриваемых как активные системы), функционирующих в условиях полной инфор мированности, ниже рассматриваются задачи управления продол В теории сетевого планирования и управления (СПУ) ключевым поня тием является понятие критического пути, поэтому когда речь идет о сокращении продолжительности проекта, в первую очередь необходимо сокращать критические операции, причем величина сокращения, очевид но, не должна превышать минимальный из резервов околокритических операций. Следовательно, можно рассматривать по отдельности задачи сокращения каждой из критических операций, то есть в рамках методологии СПУ достаточно ограничиться рассмотрением набора одноэлементных задач управления (в терминологии теории активных систем [22]).

жительностью проекта за счет использования механизмов мотива ции в условиях неопределенности.

Одним из способов снижения неопределенности является со общение информации от более информированных участников системы менее информированным. На основании сообщенной исполнителями руководителю проекта информации последний определяет значения управляющих параметров, то есть использует механизмы планирования, рассматриваемые в разделе 2.3. Для механизмов планирования исследуется задача манипулируемости и показывается, что использование механизмов с сообщением информации, даже в условиях манипулирования со стороны ис полнителей, не снижает эффективности управления.

2.1. Механизмы нечеткой активной экспертизы Под механизмом активной экспертизы понимается следующая модель [15, 17, 21, 43, 76]. Пусть имеются n активных элементов (АЭ) – экспертов [60, 61], каждый из которых имеет собственные представления ri [d;

D] (ri является точкой пика однопико вой [22, 78] функций предпочтения i-го АЭ) об оцениваемой ска лярной величине и сообщает центру информацию si [d;

D], i I = {1, 2, …, n} о своих предпочтениях. Результат экспертизы (итоговое мнение, коллективное решение и т.д.) x [d;

D] опреде ляется в соответствии с процедурой планирования (s), то есть x = (s), где s = (s1, s2, …, sn) – вектор сообщений экспертов.

Относительно процедуры планирования предполагают:

А.2.1. ( ) - непрерывна, строго монотонно возрастает по всем переменным и удовлетворяет условию единогласия: z [d;

D] (z, z,..., z) = z.

Без потери общности можно положить d = 0, D = 1.

Если предположить, что каждый из экспертов заинтересован в том, чтобы результат экспертизы был максимально близок к его мнению, то в общем случае он будет сообщать недостоверную информацию, стремясь повлиять на результат в требуемую с его точки зрения сторону. Следовательно, возникает проблема мани пулируемости механизма активной экспертизы.

В работе [15] доказано, что для любого механизма экспертизы, удовлетворяющего введенным выше предположениям, существует эквивалентный прямой (неманипулируемый) механизм, причем итоговое мнение в равновесии определяется совокупностью ис тинных мнений (иногда называемых их идеальными точками) N экспертов r = {ri} и числами ( ) = { ( )}, определяемыми i i= следующим образом: если собственные представления всех экс пертов различны и упорядочены в порядке возрастания, то (1) ( ) = ( 0,0,...,0, 1,1,...1), k = 0, n.

k n-k k При этом равновесное итоговое мнение (коллективное реше ние) x* определяется [15]:

(2) x*(r, ( )) = max min (, rk).

k- k =1,n Понятно, что последовательность ( ) зависит от упорядоче ния идеальных точек экспертов. В общем случае существует 2n разбиений вида (1), однако, так как (2) является соответствующим механизму прямым механизмом, все рассуждения можно прово дить для некоторого фиксированного упорядочения.

Кроме того, в настоящем разделе мы ограничимся анонимны ми механизмами активной экспертизы, то есть механизмами, симметричными относительно перестановок АЭ. Если механизм экспертизы является анонимным, то разбиение (1) единственно и не зависит от упорядочений истинных мнений экспертов.

Определим линейный механизм активной экспертизы [76]:

n (3) (s) = sk, L k k = n где 0, k = 1. Последовательность (1) для линейного k k= механизма имеет вид:

k (4) ( ) = 1 -, k = 1, n, ( ) = 1.

k L 0 L i i= Очевидно, у любого анонимного механизма последователь ность ( ) разбивает отрезок [0;

1] на N равных частей, в частности - у анонимного линейного механизма экспертизы = 1/N. В рабо i те [76] для анонимных механизмов экспертизы доказано, что в многоуровневых АС они допускают произвольную децентрализа цию. Кроме того, в упомянутой работе доказано, что для любого механизма экспертизы в двухуровневой АС существует эквива лентный линейный механизм экспертизы, причем при доказатель стве этого факта устанавливается следующая взаимосвязь между исходным (нелинейным) механизмом экспертизы и соответствую щим ему линейным механизмом:

(5) = -, k = 1, n, k k-1 k и любой механизм вида (3), являющийся механизмом экспертизы, удовлетворяет > 0, k = 1, n, и для любого механизма экспертизы k все элементы последовательности ( ), определяемой (1), различ ны.

При нечетном числе экспертов анонимный механизм активной экспертизы является оптимальным (в смысле погрешности проце дуры принятия решений в ситуации равновесия относительно базовой процедуры) в классе линейных механизмов [76], и, следо вательно (см. выше), в классе произвольных механизмов эксперти зы с соответствующим фиксированным упорядочением истинных мнений экспертов.

Таким образом, мы привели известные результаты исследова ния механизмов активной экспертизы, позволяющие определять равновесие и описывающие свойства линейных механизмов (см.

(1)-(5)). Важным свойством анонимных механизмов экспертизы является то, что при их исследовании достаточно ограничиться изучением линейных механизмов экспертизы с одинаковыми весами всех экспертов.

Перейдем к рассмотрению нечетких механизмов активной экспертизы, то есть механизмов, в которых сообщения экспертов нечеткие. Для этого, в первую очередь, требуется определить, что понимается под равновесием Нэша в случае, когда стратегии игро ков нечеткие. Напомним, что в четком случае s* S – равновесие Нэша, тогда и только тогда, когда выполнено:

* * * (6) i I si Si fi( si, s-i ) fi(si, s-i ), где fi(s) – целевая функция i-го АЭ, s = (s1, s2, …, sn) – вектор сооб щений, s-i = (s1, s2, …, si-1, si+1, …, sn) – обстановка игры для i-го АЭ.

Обозначим P( ) – множество четких равновесий Нэша. В [15, 76] доказано, что P( ).

Пусть функции выигрыша игроков fi : X и механизм планирования : S X четкие, а сообщения АЭ нечеткие. Обо ~ значим1 Si - множество всех нечетких подмножеств множества Si, ~ i I, S - множество всех нечетких подмножеств множества S.

~ ~ Стратегией i-го АЭ является нечеткое сообщение si Si с функцией принадлежности ~ (si ). Построим функцию принад si ~ ~ лежности ~ (s) вектора s S [81, 82]:

s (7) ~ (s) = min { ~ (si ) }.

s si iI ~ Обозначим S(x) = {s S | (s) = x}, X - множество всех не четких подмножеств множества X. Тогда в соответствии с принци пом обобщения [82] при нечетких сообщениях АЭ и четкой проце ~ дуре планирования коллективное решение x будет нечетким подмножеством множества [0;

1] с функцией принадлежности ~ (x), определяемой следующим образом:

x (8) ~ (x) = sup ~ (s).

x s sS( x) ~ Определим предпочтения экспертов на множестве X нечет ких коллективных решений. Образом нечеткого множества ~ (x) x ~ при четком отображении fi: X будет нечеткое множество fi с ~ функцией принадлежности ( fi ), которая в силу принципа fi обобщения удовлетворяет:

~ (9) ( fi ) = sup ~ (x), x fi xXi ( fi ) где Xi(z) = {x X | fi(x) = z}. Подставляя (7) и (8) в (9), получим:

~ (10) ( fi ) = sup sup min { ~ (si ) }.

si fi iI xXi ( fi ) sS( x) Выражение (10) есть функция принадлежности нечеткого вы ~ ~ ~ ~ игрыша АЭ в ситуации игры s = ( s1, s2, …, sn ).

Здесь и далее тильда обозначает нечеткость соответствующей переменной.

В общем случае, когда предпочтения АЭ на множестве кол лективных решений нечеткие, то есть заданы нечеткими отноше ~ ниям предпочтения (НОП) Ri с функциями принадлежности ~ (x, y), x, y X, i I. Фиксируем для i-го АЭ нечеткую обста Ri ~ ~ ~ новку s-i, тогда (8) можно записать как ~ (x, si, s-i ). Анало x ~ ~ ~ гично можно записать (10) как: ( fi, si, s-i ). Тогда обобщенное fi ~ НОП i-го АЭ на множестве Si есть [75, 82]:

~ ~ ~ ~ (11) (~i1, si2, s-i ) = sup min { ~ (x1, si1, s-i ), s i x x1,x2X ~ ~ ~ ~ (x1, si2, s-i ), (x1, x2 ) }.

x Ri Имея НОП (11) можно по аналогии с тем как это делается в [82] построить для каждого АЭ множество максимально недоми нируемых при данной обстановке альтернатив, а затем воспользо ваться (6) для определения нечеткого равновесия Нэша. Такой путь возможен, но трудоемок, поэтому вспомним, что в рассматривае мой модели предпочтения АЭ четкие, и вернемся к выражению (10).

~ Введем на множестве Si отношение « ~ » доминирования s-i ~ ~ ~ стратегий: при фиксированной остановке s-i игры si2 ~ si s-i тогда и только тогда, когда:

~ ~ ~ ~ ~ ~ (12) fi1 fi2 : fi2 fi1 и ( fi1, si1, s-i ) ( fi2, si2, s-i ).

fi fi Рациональным будем считать выбор активным элементом не доминируемой стратегии. Вектор недоминируемых стратегий назовем нечетким равновесием Нэша. Отметим, что в предельном случае – при переходе к четким стратегиям – введенное нечеткое равновесие Нэша совпадает с (6).

~ Обозначим P( ) – множество нечетких равновесий Нэша.

~ ~ Очевидно, что выполнено P( ) P( ), то есть P( ).

Введем следующее предположение:

A.2.2. Функции выигрыша АЭ строго однопиковые с точками ~ пика ri;

нечеткие множества si, i I, нормальны1.

Теорема 2.1. В нечетком анонимном механизме активной экс пертизы для любого АЭ и для любого равновесного по Нэшу его сообщения существует недоминируемое равновесное по Нэшу четкое сообщение.

Доказательство. В силу предположения А.2.2 множество Xi(fi) состоит не более чем из двух точек (и не менее, чем одной точки), которые мы обозначим xi- ( fi ) и xi+ ( fi ), xi- ( fi ) xi+ ( fi ).

Очевидно, что при этом выполнено:

fi1 > fi2 xi- ( fi2 ) xi- ( fi1) ri xi+ ( fi1 ) xi+ ( fi2 ).

Выражение (9) при этом упрощается и принимает вид:

~ (13) ( fi ) = max { ~ ( xi- ( fi ) ), ~ ( xi+ ( fi ) )}.

x x fi ~ Пусть при нечеткой обстановке s-i для i-го АЭ существует ~ нечеткая недоминируемая стратегия si*. Сделаем ее четкой (про изведем «дефаззификацию»), положив соответствующую функцию принадлежности (si ) равной нулю всюду, за исключением ~ si* точки, на которой достигается максимум в (12)-(13).

Получим четкую недоминируемую стратегию i-го АЭ. Анало гичным образом можно поступить по одиночке и для других АЭ, получив в итоге четкое равновесие Нэша типа (6), эквивалентное исходному. • Следствием утверждения теоремы 2.1 является тот факт, что для любого АЭ и для любой его нечеткой стратегии всегда сущест вует не худшая для него четкая стратегия. Поэтому, с одной сторо ны, можно утверждать, что допущение возможности сообщения экспертами нечеткой информации качественно не изменяет2 струк туру и свойства равновесных стратегий.

Нормальным называется нечеткое множество, максимальное значение функции принадлежности которого равно единице [82].

С содержательной точки зрения нечеткое коллективное решение может давать лицу, принимающему решение (ЛПР), большую информа цию, нежели чем четкое коллективное решение экспертов.

С другой стороны, при нечетких сообщениях АЭ расширяется ~ множество равновесных по Нэшу стратегий (P( ) P( ) ), что порождает определенные трудности при построении соответст вующего прямого механизма (см. также модель интервальной экспертизы ниже). Поясним последнее утверждение более подроб но. Соответствующим исходному механизму (s), : S X, пря n мым механизмов h(r), h: X, называется механизм [17, 78, 85], в котором АЭ сообщают центру информацию о своих точках пика, после чего центр вычисляет равновесные s*(r) в исходном меха низме при данных точках пика заявки, то есть h(r) = (s*(r). Если соответствующий прямой механизм неманипулируем, то есть в нем сообщение достоверной информации является равновесной стратегией каждого АЭ, то он называется эквивалентным прямым механизмом [78, 85].

Если для каждого профиля предпочтений (профилем предпоч тений в случае однопиковых целевых функций называется вектор точек пика) в исходном (непрямом) механизме существует единст венное равновесие Нэша (вектор равновесных по Нэшу сообщений АЭ), то это равновесие подставляется в соответствующий прямой механизм. Именно так дело обстоит в четком механизме активной экспертизы, в котором существует единственное равновесие Нэша и для которого можно построить эквивалентный прямой механизм.

Сложнее дело обстоит, когда существует несколько равнове сий Нэша. В этом случае для задания соответствующего прямого механизма используют соответствие отбора равновесий, опреде ляющее единственное для каждого профиля предпочтений равно весие в непрямом механизме. При этом возникают следующие трудности. Основная проблема заключается в том, что при практи ческом использовании соответствия отбора равновесий нет ника кой гарантии, что АЭ выберут равновесие, отбираемое применяе мым соответствием. Выходов из этой ситуации несколько: либо использование максимального гарантированного (по множеству равновесий при каждом профиле) результата, либо введение до полнительных гипотез о поведении АЭ (см. интервальные модели экспертизы ниже). В первом случае уменьшается эффективность управления, во втором требуется обоснование вводимых гипотез.

Таким образом, можно сделать следующий качественный вы вод – при использовании механизмов нечеткой активной эксперти зы увеличивается информация, поступающая к ЛПР, но, в то же время, возникает неопределенность относительно равновесных стратегий экспертов, снятие которой либо приводит к снижению эффективности данного механизма, либо требует дополнительной информации для введения обоснованных предположений о пове дении экспертов. И тот и другой способ применимы далеко не во всех ситуациях, встречающихся на практике, поэтому наиболее прямолинейным способом решения проблемы множественности равновесий является отказ от нечеткости, то есть переход к четким механизмам экспертизы, в которых равновесие единственно.

Частным случаем механизмов нечеткой активной экспертизы является класс механизмов интервальной активной экспертизы, к описанию которых мы и переходим. Пусть каждый эксперт (ак ~ тивный элемент) сообщает центру отрезок si = [ si- ;

si+ ], где 0 si- si+ 1, i I. Механизм интервальной экспертизы являет ся частным случаем механизма нечеткой экспертизы, так как первому соответствует конкретная функция принадлежности:

1, si [si- ;

si+ ] (14) ~ (si ) =, i I.

si 0, si [si- ;

si+ ] При использовании анонимного механизма множество S(x) имеет вид:

n S(x) = {s S | si = nx}.

i= Коллективное решение является интервалом с функцией при надлежности:

1, nx [ n si- ;

n si+ ] i=1 i= (15) ~ (x) =.

x n n 0, nx [ si- ;

si+ ] i=1 i= Интервальный выигрыш i-го АЭ имеет функцию принадлеж ~ ности ( fi ), определяемую следующим образом fi n n n n s-;

s+ ] или nxi+ ( fi ) [s-;

s+ ] 1, nxi- ( fi ) [ i i i i i =1 i =1 i =1 i = ~ (16) =.

fi n n n n 0, nxi-( fi ) [ i i ] и nxi+ ( fi ) [ i i ] s-;

s+ s-;

s+ i =1 i=1 i=1 i = Построим равновесие Нэша. Пусть АЭ упорядочены в порядке возрастания их точек пика: r1 r2 … rn. Построим разбиение n - i n - i + отрезка [0;

1]: = [ ;

], i I. По аналогии с четким i n n случаем [15] можно утверждать, что если существует (а он если существует, то единственен) АЭ с номером k таким, что rk, то k он является диктатором, то есть его тока пика будет принадлежать интервальному коллективному решению.

- + Обозначим i = s-, i = s+. Структура равновесия j j ji ji * ~ Нэша s и его свойства в рамках предположений А.2.1-А.2. даются следующей теоремой.

~ Теорема 2.2. 1) Если i > nri, то si* = [0;

a], где a – произ вольное число из отрезка [0;

1];

+ ~ Если i + 1 < nri, то si* = [a;

1], где a – произвольное число из отрезка [0;

1];

- + ~ Если nri [i ;

i + 1], то si* = [a;

b], где a b и a [0;

min {nri - i ;

1}].

Доказательство теоремы 2.2 тривиально, так как заключается в проверке того, что построенные сообщения при фиксированной обстановке являются недоминируемыми, и опускается.

Следствие. В интервальном механизме активной экспертизы диктатором является АЭ с номером k (см. определение выше).

Равновесные сообщения имеют следующий вид:

~ ~ (17) i < k si* = [0;

a], i > k si* = [b;

1], * ~ а сообщение диктатора таково, что rk ( s ).

Отметим, что в соответствии с результатом теоремы 2.2 одним из равновесий Нэша является сообщение всеми экспертами одина ковых сообщений, совпадающих с отрезком [0;

1] (см. выражение (17)), то есть всем интервалом возможных значений оцениваемой величины. Понятно, что подобные сообщения (являющиеся равно весными!) не несут для ЛПР никакой информации.

Основной качественный результат теоремы 2.2 заключается в том, что в интервальных механизмах активной экспертизы сущест вует множество равновесий Нэша. Для уменьшения их числа необходимо вводить те или иные гипотезы о поведении АЭ или модифицировать механизм, например, ограничивать «ширину» отрезков, сообщаемых АЭ, и т.д.

Выше мы рассмотрели модель нечеткой активной экспертизы, в которой механизм планирования и целевые функции АЭ были четкими, а нечеткими могли быть сообщения АЭ. «Фаззифициро вать» можно и другие параметры, например, механизм планирова ния и др. В качестве иллюстрации в заключение настоящего разде ла кратко рассмотрим модель экспертизы, в которой все параметры за исключением предпочтений АЭ четкие.

~ Пусть Ri – НОП i-го АЭ, i I, на множестве X = [0;

1], ~ имеющее функцию принадлежности (x, y), i I. Если страте Ri гии АЭ и механизм планирования четкие, то четким является и результат экспертизы – коллективное решение.

~ Механизм планирования ( ) и НОП АЭ Ri индуцируют на ~ множестве Si = [0;

Pages:     || 2 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.