WWW.DISSERS.RU


...
    !

Pages:     || 2 |
-- [ 1 ] --

01.02.06. , , , . . - 2004 2 . ............................................................. 5 .................................................................................. 6 1. .......... 14 1. 1. ................ 14 1. 2. .......................................... 17 1.3. 22 1. 4. ................. 25 1. 5. ................................................. 33 2. .................................. 35 2. 1. ............................... 35 2. 2. ..... 40 2. 3. .................................... 48 2. 4. .............................. 51 2. 5. ............... 53 2............................................................ 56 3. ......................................... 58 3. 1. ......................... 58 3.2. . ....................................................................... 61 3. 3. . ................................. 64 3. 3. 1. ................................................... 64 3. 3. 2. ................................................ 67 3. 3. 3. .......................................... 70 3............................................................ 4.

. ...................................................... 75 4. 1. ..................................... 75 4. 2. . ................. 78 4.3. ....................................................................... 81 4. 4. - ....... 87 4.5. ............................................................................ 90 4. 6. .................................. 94 4. 6. 1. ..................... 96 4. 6. 2. .................................................. 99 4...........................................................103 5. ...................................................105 5. 1. ......................105 5.2. .............................................................................107 5. 2. 1. ............................107 5. 2. 2. ...111 5. 2. 3. ....................113 5. 2. 4. ....................114 5.3. ..........................................................................116 5...........................................................120 6. .................................122 6. 1. ................ . 6.2. ........................................................................129 6.3. ..............................................................................134 6.4. ......................................................................136 6...........................................................138 .....................................................................140 ..............................................................144 .........................................................................162 1. ............................163 2. ................................ , - , , , , , - , - , , , , .

( ) , . , , . . ( , ). . ( 1 5 3 5 1 6 1 1 ) . ( 1 6 2 6 1 6 9 8 ), . ( 1 6 6 6 1738), . ( 1 6 4 0 1 7 3 7 ) 1 0 0 0 , , , , . , . , ( . . ). , , . ., . . , ? ? ? . , , , , .

, . , . , . , , , . . . , . . . . . . , , , , : , , . , , . . X I V X V . " " " ". X V I . , . , X V I I I . . . , . : . . . - . , . , . . , , , , . , - . , .

( , , ), , , ( ). ( ). . " , , , , " [2 4 ]. " " . , . [ 1 0, 4 2, 5 9, 1 1 3, 1 1 4 ] : . . . . . , , " " . , , , . . . , , , . . , , . , " " , : 1. , [10 5, 106 ]. 2. , [10, 59]. - - , . , : . , . , . , , , . ( 1 9 9 9 2 0 0 3 ). , , , . , , . . . . . . . , , . , - . . . . . . . , . : , , . . . , , . - . , , . : , . . . 1 0 . . . . .

. . , . . , , . .

1. . . . , . . 1. 1. . ( 6 ..) . , 3 : 2. ( 4 . .). . . . (480 525). . : " , , , , . . . , , . , . , , , . , , , ". . . ( 1 5 6 4 1 6 4 2 ). , . , . , 1 : 1, 1 : 2, 2 : 3 , , 1 5 : 1 6, . [69 ]. . ( ). , , . ( 1 6 5 3 1 7 1 6 ), 1 7 0 0 1 7 0 7 . : , . , , , . . , 1 7 0 0 , . . ( 1 6 8 5 1 7 3 1 ). , . . (1707 1783), . (1700 1782), . ' ( 1 7 1 7 - 1 7 8 3 ), . ( 1 7 3 6 1 8 1 3 ). . , . . . [ 1 2 4 ]. , , . . . . [39 ], . . [56, 57 ] . . : , . , . , . , , . . ( 1 7 5 6 1 8 2 7 ). [1 56 ] , , . . . ( 1 8 2 1 1 8 9 4 ). ;

( ) ;

, . XI X .. ( . . ) [ 1 2 2 ]. , . 1. 2. . , [ 1 0, 1 5, 5 9, 61, 113]. , , . . , , . , . , , .

( ) . ( ), . , : , , . S ( ). , , . , , , , , . " ", . . , . . , , [ 1 0, 5 9, 1 1 3 ]. . 1.1 . , [59, 93, 95]. 2 . 3 9 . , . . 19 1 .1.1. , . . [ 5, 1 6 1 ] : K= E = c, ( 1.1 ) , , . K, . , , , . [1 3 0 ]. . 1 1, 5 . . . , , , , [90, 96, 97]. . [1 13 ], . . [91, 98 ] . , . , . : , , [ 1 3 3 ]. , . . [9 9 1 0 1 ] . [ 9 4 ] ( ) . . , , [ 4 4, 5 5, 9 2 ]. , ( ), , ( ) , . , - . . . . ( ) : , , [10 ]. . R u s s t o n e X X I, C a t a l y s t I n s t r u m e n t s CA Guit ars, . . , Ȗ , . ;

;

- - ;

( ) ;

, . 1.3. . , , [ 4, 8, 1 7, 2 8, 2 9, 3 1, 32, 40, 41, 52 54, 73, 75, 76, 81, 85, 111, 117]. . , , . , , . 1 9 4 4 [17 2 ]. .. , .. , .. [1, 2, 104], .. [3], .. [18], . . [ 2 0 2 3 ], . . [25 ], . . [27 ], . [60], .. [6 8 ], . . [108], .. [ 1 2 4 1 2 6 ], .. [1 32 ] .

, , , . . . () . ( ). . , . . , . . . . [ 2 7 ] , . . , , , .. [126]. : .

, , . [ 2 0, 2 2, 2 8 ], , [8, 18, 26, 124]. . . , - , [11, 12, 33, 83, 104, 107, 109, 119]. . . - - . : [16, 26 ]. . . . [ 1 0 4 ] - . , , , - . . ( ). ( ). , . " " [43 ]. , , . . [ 4 7, 4 8 ], . [35 ], . . Ē [82 ], . [118], . . [ 1 0 7 ]. . . [ 1 2 1 ], . . [43 ]. . . [11], . . [ 1 6 5 ], . . [ 1 7 8 ]. A N S Y S, N A S T R A N [7 9, 1 3 4 ]. . . , . . , .. [1 ], . . . . [1 12 ], [9, 36, 37, 109, 110, 150, 162, 177]. 1. 4. , .

, [ 3 8, 8 4, 1 2 9 ]. : . . . . . - [1 1 3, 1 1 4 ]. [ 1 1 3 ] . . , , , . . . : , . . . . , . K = W K = W . ( 1.2 ) W ( ), W , , . . . - , . , 260 270 400 500 7 0 0 1 5 0 0 . . . [16 3 ] , . . 1. 2 [88 ]. , , , . . . [4 6 ] . 1 8 . : , . , , , , . , . 1 9 6 7 . [ 1 7 9 ].

28 P, f, 0,08 P, 0,125 0,2 0,315 0,5 0,8 1,25 2 3,15 5 f, 0,08 0,125 0,2 P, 0,315 0,5 0,8 1,25 2 3,15 5 8 f, 0,08 0,125 0,2 0,315 0,5 0,8 1,25 2 3,15 . 1. 2. 5 . [ 1 5 4, 1 5 5 ]. . . . , . . , , , . [152] A B A Q U S - . 1 7 0 0 0 2 5 0 0 . . . [ 1 5 7, 1 5 8 ] . . . [89 ] - . 3 0 0 0 8 6 0 0 . . 0, 0 4 2 0 [ 1 7 4 ] . , ( ). . ( ). . . . [ 1 6 7, 1 7 0 ] . , . . [ 1 6 6, 1 7 6 ] . , . , . [169] 9 0 , 2 0 . . ( ) . , . , . , 6 0 0 1 0 0 0 1 6 0 0 . , . . , . , . , [15, 148]. . , . . [ 1 5, 5 9 ]. , 1 9 9 8 , - [ 6 2 6 5, 1 3 5 1 4 5 ]. , . , , . :

1. [30, 34, 42, 46, 56, 67, 103, 113, 114, 148, 149, 151, 163, 168, 170, 171 173, 174]. 2. - [ 4 4, 5 5, 7 0, 7 1, 9 2, 1 2 7, 1 2 8, 1 3 0 ]. 3. [ 6, 1 3, 1 4, 3 8, 6 2 6 5, 7 2, 8 4, 1 1 5, 135 145, 152 155, 158, 160, 166 168, 175, 176]. , , . . , - . . : , . , , . , - . , , , , . . , . 1. 5. : . , . , . . . , . : 1. , .

2. . 3. . 4. - . 5. . 6. - , . 7. . 8. . 9. .

2. . , . , . . , - . . . . . . 2.1. , , . . . 2.1. - ( .2.1). , , :

T T T & & { } { }dS + {u} [m0 ]{u&}dS + {u} [b]{u}dS n =1 S S S N T T {u} {p}dS {} [N o ]{ }dS = 0 S S (2.1) n , N , , S , { } , {} & && , {u }, {u} {u} , ( ), {} , [N 0 ] , {p (t)} , [m 0 ] , [b ] . (2.1) t. :

{u ( 1, 2, t )} = [( 1, 2 )]{q ( n) (t )}, (2.2) {u} , [] , {q ( n ) } , 1 2 . (2.2) , ( ): {}=[Q]{u}=[Q][]{q ( n ) (t)}. [Q] . - (2.3) { } = [D]{ }, [D] .

(2.4) , (2.2), (2.3) (2.4), (2.1) && & + {q}T M (n ) {q} + B (n ) {q} R (n ) {q} = 0. [M ( n ) ], [B ( n ) ] [R ( n ) ] ;

, . : [M ( n ) ]= [ ] [m][ ]dS, T S n =1 S { }T [D]{ }dS {u}T {p}dS + N ([ ] [ ] [ ] )] S (2.5) (2.6) [B ( n ) ]= [ ] [b][ ]dS, T S (2.7) (2.8) [R ( n ) ]= ([Q ][ ])T [N o ][Q ][ ]dS.

S {} . {} = [L]{u} [L]{u} - {} = 0, (2.9) [L] . [26, 104, 172]:

([L] {u})T [D]{ }dS W ( {u}) = 0, n =1 N - S (2.1 0 ) { }T [D ]([L]{u} { })dS = 0 n =1 S N (2.1 1 ) W({u } ) t, :

W ( {u}) = {u} {p}dS {q} T S T & & ([M ]{q&} + [B]{q} [R]{q}).

(2.12) , (2.10) (2.11) . (2.10) , (2.11) . {} {( 1, 2, t)}=[( 1, 2 ) ]{( t)}, . (2.2) (2.13) (2.10) (2.11), (2.1 3 ) [] , {} T (n) T (n) [{} ( [G ] {q}-[H ]{})]=0, N n=1 N (2.14) (2.15) n= T (n) T (n) (n) (n) && & [{q} ( [G ] {}-{P}+[M ] {q} +[B ] {q} - [R ]{q})]=0.

[G ( ) ]= [ ] [D][L][]dS, [H ( ) ] = [ ] [D][ ]dS, n T n T { F }= [] {p} dS.

(n ) T S S S (2.16) [C ( n ) ]=[G ( n ) ] T [H ( n ) ] - 1 [G ( n ) ]. , [C ( n ) ] . (2.14) (2.15) {} n [36, 43, 47, 48, 82, 121], (2.17) (2.1 7 ) & & [M ]{q&} + [B]{q} + ([C ] [R ]){q} = {F (t )}.

(2.1 8 ) [M], [B], [] [R] , , , ;

{F( t)} . , . , . [ ]{qm } = {Fm }, . , (2.1 9 ) {F m } , (2.18) (2.19).

2.2. . [12, 35 37, 43, 47, 48, 118]. , , - , . ( ) :

.

, , . . , "" . , , . , . , ( , .) [10, 44, 55, 92, 133]. () - . - . . , . , , , . , , . , , , , [104]. . , , . , , , :

, .

. - , - , . .. [104]. . 3 0 (.2.2). - [104] (2.2) (2.13). []=[[] ( 1 ), [] ( 2 ), [] ( 3 ), [] ( 4 ), [] ( 5 ), [] ( 6 ) ], {q }= {{q}( ),{q}( ),{q}( ),{q}( ),{q}( ),{q}( )}, T 1 T 2 T 3 T 4 T 5 TT (2.20) {q} ( i ) ={ u1(i ), u 2(i ), w(i ), 1(i ), 2(i ) } T, 5 3 z 6 4 .2.2. 2 z 1' O O' b 2' .2.3. {}={ 1, 2, 1 2, 1, 2, 1 2, 3 1, 3 2 } . u1(i ), u2(i ), w(i ), 1(i ), 2(i ) i ( i=1, 2, , 6);

1, 2 1 2 ;

1, 2 1 2 ;

3 1 3 2 . [] ( 5 3 0 ) . [] ( i ) = i [E], [] ( 5 5). i L ( ) 1 =L 1 ( 2 L 1 1 ) ;

2 =L 2 ( 2 L 2 1 ) ;

3 =L 3 ( 2 L 3 1);

4 =4 L 1 L 2 ;

5 =4 L 2 L 3 ;

6 =4 L 3 L 1.

(2.21) L 1 2 [1, 104]. i ( i = 1,,6) . {} . {} 24. , . [] (8 24). , : 1. ( ) 2 k. - , , .

[1, 27, 104]:

{N } = [D]{ }, {N}={N 1, N 2, N 1 2, M 1, M 2, M 1 2, Q 1, Q 2 } , ( 2.2 2 ) 11 21 0 11 [D] = 21 0 0 0 12 22 0 12 22 0 0 k 0 0 33 0 0 33 0 11 12 0 D11 D21 0 0 12 22 0 D12 D22 0 0 0 0 33 0 0 D33 0 0 0 0 0 0 0 K11 0 0 0 0 0, 0 0 K 22 ( 11, C11, D11 ) = g11 j H12 j (t Bj, tCj, t Dj ), j =1 k ( 12, C12, D12 ) = g12 j (t Bj, tCj, t Dj ), j =1 k ( 33, C33, K D33 ) = g 44 j H 12 j (t Bj, tCj, t Dj ), (1, 2);

j = k H 12 j t Bj = h 2, g 55 j i = 2 + k 2 (z j + z j 1 ) 2 + k1 (z j + z j 1 ), 2 j k H 21 j t Bj K11 = h 2 ;

g 66 j i = (1, 2);

z 21 j H 12 j = t Bj = z j z j 1, t Cj (z = ), t Dj (z = 3 j z 31 j ).

j ( ), h , z j 1 z j j ( 1 2 ), k 1 k 2 , g n m j ( m, n = 1, 2, 4, 5, 6) , j- . g n m j [52]. , , :

0 g11 = 1 / ( 1 - 1 2 2 1 ), 0 g12 = 2 1 1 / ( 1 - 1 2 2 1 ), 0 g 22 = 2 / ( 1 - 1 2 2 1 ), 0 0 0 0 0 g 44 =G 1 2, g 21 = g12, g 55 = G 3 2, g 66 = G 3 1.

1, 2 , G 1 2, G 3 1 G 3 2 , 1 2 2 1 . 1 1, 2 2, 3 . . , . [B] ( 3 3 ), [D] ( 3 3 ), [C] ( 3 3 ) [K] ( 2 2 ) , , . , , . [C] ( 3 3 ) . 1 2. (2.9), {u }= { u1, u2, w, 1, 2 }, ( 2.2 3 ) 1 21 2 12 0 [L] = 0 0 k 1 0 1 = . 1 () ;

1 1 21 0 0 0 0 k2 k1 k2 0 0 0 0 2 0 0 0 21 2 1 0 0 12. 2 1 21 0 1 12 = 1 1 1 2 (1 2), 1 2 . , v1 = u1 + z (1 2);

v3 = w, (2.24) u1, u 2 w z = 0;

1 2 , . (2.8). , N0 [N 0 ]= 1 0 N 0 N12, 0 N k [Q]= 1 0 k 1 0 0. (2.25) 0 0 0 N1, N 2 N12 (2.19). (2.6). [m] =d i a g [m 0, m 0, m 0, I 1, I 2 ]. m 0 ;

I 1, I 2 m 0 1 2.

, , ( ) . , . (2.6), (2.7), (2.8), (2.16) .

2.3. ( ) , [104]. 3 , 3 ( .2.3). b . {u} = [ ]{s}.

{}=[]{} ( 3 9). [] = [[](1), [](2), [](3)].

( 2.2 6 ) ( 2.2 7 ) [] - []i = i [E], [E] (3 3). :

1 = 2 2 - 3 +1, 3 = 2 2 -, 2 = -4 2 +4, (2.28) = ( 1 - 1 ( 1 ) ) / ( 1 ( 3 ) - 1 ( 1 ) ), 1 ( 1 ), 1 ( 3 ) ( .2.3). i . [] ( 3 6 ) [] = diag[[ F], [F], [F]], : {s } ( i ) ={ u (i ), w(i ), ( i ) } T ;

{}={,, } T. (2. 3 0 ) ( 2.3 1 ) [F] = [1 -, ]. (2.29) u ( i ), w ( i ) - i ( i = 1, 2, 3) 1 z , ( i ) ( i) 2, , , . , k . - . 2 z . . (2.22), {N}={N, M, Q} , ( 2.3 2 ) d11 [D] = d 21 d12 d 22 k 0 0. d k k d 1 1 = E j f j t1 j, d 1 2 = d 2 1 = E j f j t 2 j, d 22 = E j f j t 3 j, j =1 j =1 j = d 33 = G13 j f i t1 j, t1 j = z j z j 1, t 2 j j = k (z = 2 j z 21 j ), t3 j (z = 3 j z 31 j ).

j , z j - 1 z i j- , E j G 1 3 j , f j j- . , (2.9) . , : [L] = 0 k = k 0 0. 1 (2.3 3 ) (), k . (2.3 4 ) (2.6). [m] = d i a g[m 0, m 0, J 2 ]. m 0 2. , , (2.18) (2.19) ~ ~ (n) ( n ) = [T][ ( n ) ][T ' ] - 1, M = [T][M ( n ) ][T ' ] - 1. m 0 J 2 [] [ ] (2.35) [T] = d iag [[T], [T], [T]], 1 [T] = 0 b 0 1 0 0 0, 1 [T] ' = diag[[T ' ], [T ' ], [T ' ]], 1 [ T ] = 0 ' 0 1 b 0. [M ( n ) ] [ ( n ) ] (2.6) (2.17). , . .

2.4. ~ & [M ]{q&} + C {q} = 0, (2.3 6 ) ~ = [ ] [R ] .

[] [] ( 1 0 0 0 0 ) . , p << m, m . [11, 53]. (2.36) {q(t)}=ejt{w}. ~ {w j } = j 2 [M]{w j }, (2.37) (2.36) [] (2.3 8 ) j {w j } ( j = 1, 2,..., p ). [X O ] ( r x m). [X O ] . , p, r = min (2 p, p +8) . p ( 6 ) , 9 . (2.38) r : [YO] = [M][XO] ~ [X ] = [Y 1 ] (2.3 9 ) [X ] = [X ][Qk ] [Y ] = [M ][X ] ~ T T = [X ] [X ], M = [X ] [ ][X ]. (2.40) [Q ] = M [Q ][ ], .

(2.4 1 ) [] j = j 2, (2.40) m r, r << m. (2.41) . (j(k)- j(k-1))/j(k), . = 1 0 - 6 . 2.5. {F( t)} = { F 0 } sin(t). (2.4 2 ) , {F 0 } . . .. [21], .. [18], .. [86], .. [102], .. [107] . . .. [49 51, 180] . [11, 18, 45]. (2.18) . [11] j [B] = M j [M p j= 1 ~ ], (2.4 3 ) k . p : 1 j = 1 + 2 j + 3 3 +... + p (j2 p 3 ). j 2 j (2.4 4 ) j j j ( ). j p. p = 2 (2.44) :

~ [B] = 1[M] + 2[ ], 2 j j = 1 + 2 2. j (2.4 5 ) (2.45) , , . j j , . [113, 127]. [178]:

e j = 1 j, (0,5 e 0,7).

(2.46) 1 = 2, ( ). ( ) p . {q(t )} = [ ]{Z (t )}.

(2.47) [] = [ 1, 2 , p,] , p , {Z(t)} , . [] T [][] = d i a g[1] [] T [B][] = d i a g[2 j j ] (2.4 8 ) ~ [] T [] = d i a g[ j 2 ] (2.18), , [] && & Z j + 2 j j Z j + 2 Z j = f j (t ), j (j = 1, 2, p ) (2.49) {f j (t )} = []T {F (t )} , j- . , (2.49) . , , : {z j ( t)} = { z 1 j } sin t + {z 2 j } cost, z 1 j = 1 j f 0 j = (2.5 0 ) f0j, 2 2 j ( 2 2 ) 2 + 4 2 2 2 j j j x z2j = 2j f0j = 2 j 2 2 j ( 2 j ) + 4 2 2 2 jj x f0j.

1 j, 2 j . "" j . p , " ", . : z j (t) q (t). (2.47). {q (t)} = { q 1 } sint + {q 2 } cost, {q 1 } = []diag[ 1 j ][] T {F 0 }, {q 2 } = []diag[ 2 j ][] T {F 0 }. {q 1 }, {q 2 } . (2.51) 1. . , , , , - - , , , . . 2. , . , . . . 3. . , , . . . .

3. - . . . . 3. 1. . 3 8 6 - L = 540 , ( . ). , , , ( " "), ( ), ( ). , . , . . . 3. 1 ( ). . , , . . , . 5 7. . . . .3.1 . , . .3.1, .1.

1 , 1 L L1 L2 H H1 H2 B 260 80 80 12 6 6 5 2 230 55 55 12 2 4 5 3 325 65 95 12 5 3 5 4 326 55 105 12 8 6 5 5 184 0 0 5,5 5,5 5,5 28 6 170 40 40 12 6 6 B H, . , . 1 0 1 5. . . , 278 30 85 83 1 55 2 1 2 3 5 3 356 H2 L2 L 90 80 345 130 195 ("") 460 10 H1 L .3.1. 386- . ( . .3.1). . 9 6 6 8 . . 9 9 0 , 1 4 0 , . .2.1. - . . . , . ( u = v= w = 0), ( u = v = w = 1 = 2 = 0). u, v, w, 1, 2 , . 3. 2. : . . . : 1 , 2 , 3 ( .3.2).

[61 ], , : P 1 = 71 , P 2 = 72 , P 3 = 1 2 5 , P 4 = 1 0 5 , P 5 = 1 0 0 , P 6 = 1 0 5 , P 7 = 1 0 1 . . ( ) ( ) . , . , , 6 7 9 ( ~ 6 9, 2 ). ( 2. 1 9 ). . - .7 ( .88). , , . . 3. 3 , . . , ( ) . . 3.3 3, . . , 3 , 1 6 , 2 1, 3 . , . 1 4, 5 , h = 3 . 4 .

.3.2. W, 10-3 P e 0, 0,6 0, X1L 5 1, 0, - -2 e = 0,01 1 2 3 1 () 2 () 3 () - - - .3.3. . , , . 3. 3. . , . , , , . . 3. 3. 1. a = 0,4 , h = 2 1 0 - 3 q = 1 2, 5 / 2. : ( = 2 0 0 , = 0, 3 ). ( 1 = 2 0 , 2 = 2 0 0 , 1 2 = 0,03, 2 1 = 0, 3, G 1 2 = 2 8 6, 2 ).

. 3. 4 , - . . 2 . .3.5 3. 6 , .

x3 x q x .3.4. , - 2 2 4 8 16 24 36 50 [126] w,10-3 1,96 4,57 7,69 8,05 8,06 8,52 8,87 8,87 M1, ()/ 1,4 3,9 6,7 7 8,1 9,3 9,5 9,58 w,10-2 0,509 1,16 1,85 2,05 2,06 2,08 2,11 2,14 M2, ()/ 1,4 7,3 12 12,1 12,3 14,7 16,2 19, w, 10 - [126] 0 0 10 20 30 40 50 .3.5. w 12 10 8 6 4 1, H/ [126] 0 0 10 20 30 40 50 .3.6. M1 , N = 36 [ 1 2 6 ] 3 %. 3. 3. 2. , ( .3.7). a = 0,4 , h = 10 - 2 , = 8 1 0 3 / 3. :

( = 1 9 8 , = 0, 3 ). ( 1 = 1 9, 8 , 2 = 1 9 8 , 1 2 = 0,03,.

2 1 = 0, 3, G 1 2 =7 , G 1 3 = 1 9, 6 = 1 9, 6 ) - N = 2 5 6. , : 4 w/ x 4 + 2 4 w / x 2 y 2 + 4 w/ y 4 + h 2 w /t 2 = 0, (3.1) D 1 1 4 w / x 4 + 2 D 1 2 4 w/ x 2 y 2 + D 2 2 4 w/ y 4 + h 2 w/ t 2 = 0 ( 3. 2 ) w ( x, y, t) ;

D 1 1 D 2 2 ;

D 1 2 . x 1 x 2. , , (3.1) (3.2), [22 ]:

j = j a D11, h ( 3.3 ) 68 x a x1 a .3.7. , 3 m 1 1 2 2 1 3 2 3 3 71 4 2 4 3 4 4 n 1 2 1 2 3 1 3 2 3 4 1 4 2 4 3 4 3,647 7,452 7,452 10,941 13,420 13,485 16,695 16,695 22,146 21,615 21,615 24,621 24,735 29,838 29,838 37,177 M[22] 3,556 7,386 7,386 10,889 13,337 13,337 16,656 16,656 22,222 21,313 21,313 24,540 24,540 29,960 29,960 37,556 [164] 3,646 7,437 7,437 10,965 13,393 13,393 16,717 16,717 24,631 j j- ( j = 1, 2,.., p ), p . D 1 1 = D. . 3 j 1 6 , . 4 ( 11 ). m n , . [2 2 ], ( ) [ 1 6 4 ], ( ). .3 , [164] 0, 0 3 %. 0, 1 %. , [164], [2 2 ].

4 m 1 2 3 1 2 4 3 4 1 2 3 n 1 1 1 2 2 1 2 2 3 3 3 7,654 10,147 15,504 19,725 21,334 23,857 25,062 31,754 37,678 38,942 41,943 [22] 7,570 9,971 14,936 20,137 21,587 22,249 25,060 30,898 39,064 40,300 42, , .4 , [2 2 ] 1 %. 4 %. 3. 3. 3. . . ( 2. 3 6 ), [ R ] , . . , [ C- R ] . ( ). , , , . . : x 1 = 0 x 2 = , ( .3.8). 1 q ( ). . " ". : a = 0,4 ;

h = 1 0 - 2 .

x q q x1 .3.8. 5 4 16 64 256 [2] q,106 / 345,312 13,391 6,498 6,158 6, q, / 20 [2] 10 6, 0 0 50 100 150 200 .3.9. q = 1 9 8 , = 0,3. .5 .3.9 [2 ], . : [2 ]. , , " ". , , ( 2.2 ) ( 2. 1 3 ), , . N = 64 4, 5 %, N = 256 0,76%. 1 . . . 3 1. . 9 9 0 1 4 0 . . 2. . . . : . ( ) . 3. . , . ( 3 %) - , . 4. . . , N = 2 5 6 . 1 %. 5. . . . N = 64 , , . " " , , . 6. : - . . [1, 104 ] .

4. - . , , . - , . - . . . , , [ 7 4, 1 2 3, 1 4 6, 1 4 7 ]. 4. 1. , : , ( ) - . . 4. 1 . ( ) ( 3 .4.1). . : - 1 0 ( 1 .4.1) ( 2 .4.3). (1 .4.3).

.4.1. (1 ;

2 ;

3 ) .4.2. (1 ;

2 ) 1 .4.3. (1 ;

2 ;

3 ) .4.4. (1 ;

2 ) , " " (3 .4.3). d = 56 , h = 1,5 , 2 3 . 1 0 ( . 4. 4 ). . . KD-91 (Metra Me und F r eq u e n z t e c h n i k R a d e e u l ), ( 2 .4.4 ). 1, 8 . . . , . , , .. 5 6 0 . 4 - 2 2 ( 2 .4.1), - 3 - 3 4 ( 1 . 4. 2 ) 9 - 8 ( 2 .4.2). 4. 2. . [ 1 5 6 ]. . . . , . , . . .4.5, , , . 4. 6 . .3.1. . ( ) 1 = 85 87 , ( ) 1 = 116 120 .

. . , ( f > 1 ) . " " . , .4.5 4. 6, , . , . . . ( . 4. 5 4.6), , . . .4.5. .4.6. : . , , , . . 4.3. . , F( t) = F 0 sin t, ( 4.1 ) F 0 . ( .4.7), . .

1 2 .4.7. F 0 a 0. . q0 = ka0, F0 f ( 4.2 ) k =1 0 4 , f . , 2 3 8 0 5 6 0 . . ( .3.1 ) . . 4. 8 4. 1 3 . , . , , , , . . : [ 1 8 0 ] ( ) [ 4 0, 7 8, 1 2 0 ]. : ;

;

.

Pages:     || 2 |



2011 www.dissers.ru -

, .
, , , , 1-2 .