WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     || 2 |
-- [ Страница 1 ] --

РОССИЙСКАЯ АКАДЕМИЯ МЕДИЦИНСКИХ НАУК ГУ РОССИЙСКИЙ ОНКОЛОГИЧЕСКИЙ НАУЧНЫЙ ЦЕНТР им. Н.Н. БЛОХИНА

На правах рукописи

ПЕТРЕНКО АНАТОЛИЙ АНАТОЛЬЕВИЧ АНАЛИЗ МЕТИЛИРОВАНИЯ ДНК ПРИ РАКЕ ШЕЙКИ МАТКИ

(Онкология - 14.00.14) ДИССЕРТАЦИЯ на соискание ученой степени кандидата биологических наук

Научный консультант: профессор, д.б.н. Ф.Л. Киселев Москва 2003 -2 ОГЛАВЛЕНИЕ СПИСОК СОКРАЩЕНИЙ................................................................................ ВВЕДЕНИЕ........................................................................................................... МЕТИЛИРОВАНИЕ ДНК................................................................................. Распространение метилирования ДНК................................................................

Стр.

5 6 9 9 Функция метилирования ДНК.............................................................................. 12 Метилирование во время развития....................................................................... 13 Ферменты метилирования..................................................................................... 15 Метилирование как динамический процесс........................................................ 17 Роль метилирования в канцерогенезе.................................................................. 20 Генетическая роль метилирования ДНК в канцерогенезе................................. 22 Эпигенетическая роль метилирования ДНК в канцерогенезе........................... 23 Сравнительный анализ современных методов определения статуса метилирования ДНК............................................................................................... 33 Методы анализа статуса метилирования CpG динуклеотидов...................... 33 Методы идентификации CpG-островков, аберрантно-метилированных в опухолях................................................................................................................... 35 Заключение.............................................................................................................. 37 МАТЕРИАЛЫ И МЕТОДЫ............................................................................... 38 1. Список использованных реактивов.................................................................. 38 2. Клинические материалы.................................................................................... 40 3. Выделение ДНК и РНК из клеточных культур............................................... 41 4. Выделение ДНК из лейкоцитов........................................................................ 41 5. Рестрикция геномной ДНК................................................................................ 42 6. Бисульфитная модификация ДНК.................................................................... 43 7. Полимеразная цепная реакция.......................................................................... 43 7.1. Праймеры......................................................................................................... 43 7.2. Метилчувствительная ПЦР со статистическими GC-богатыми праймерами............................................................................................................. -3 7.3. Метилчувствительная ПЦР со специфическими праймерами............................................................................................................. 46 7.4. Метилспецифическая ПЦР............................................................................. 46 8. Выделение продуктов ПЦР из гелей................................................................ 47 8.1. Выделение продуктов ПЦР из полиакриламидного геля............................. 47 8.2. Выделение продуктов ПЦР из агарозного геля............................................ 47 9. Клонирование продуктов ПЦР…...................................................................... 47 9.1. Вектор.............................................................................................................. 47 9.2. Получение компетентных клеток Escherichia coli...................................... 48 9.3. Трансформация клеток Escherichia coli........................................................ 49 9.4. Выделение плазмидной ДНК........................................................................... 49 10. Гель-электрофорез............................................................................................ 50 10.1. Электрофоретическое разделение ДНК в агарозном геле........................ 50 10.2. Электрофоретическое разделение РНК в агарозном геле........................ 51 10.3. Электрофорез ПЦР-амплифицированной ДНК в денатурирующем полиакриламидном геле.......................................................................................... 52 11. Блот-гибридизация........................................................................................... 53 11.1. Перенос ДНК на нейлоновую мембрану...................................................... 53 11.2. Перенос РНК на нитроцеллюлозную мембрану......................................... 53 11.3. Получение меченого зонда............................................................................ 54 11.4. Гибридизация ДНК (РНК), иммобилизованной на мембране.................... 54 12. Обратная транскрипция................................................................................... 55 13. Переосаждение ДНК (РНК)............................................................................. 55 14. Анализ нуклеотидных последовательностей................................................. 55 14.1. Поиск гомологий в банках данных............................................................... 55 14.2. Критерии CpG-островков............................................................................ 56 РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ.................................................................. 57 1. Поиск CpG-островков, гиперметилированных в опухолях шейки матки..... -4 1.1. Принцип метода метилчувствительной ПЦР со статистическими GC-богатыми праймерами.................................................................................... 57 1.2. Анализ фрагментов, выявленных с помощью метилчувствительной ПЦР со статистическими GC-богатыми праймерами..................................... 63 1.3. Определение статуса метилирования CpG-островка 32 при раке шейки матки.......................................................................................................... 2. Исследование экспрессии и статуса метилирования гена 3А-адаптина при раке шейки матки............................................................................................ 76 2.1. Исследование экспрессии мРНК гена 3А-адаптина в опухолях шейки матки и в клеточных линиях рака шейки матки................................................ 76 2.2. Изучение статуса метилирования CpG-островка гена 3А-адаптина в опухолях шейки матки и в клеточных линиях рака шейки матки..................... 78 ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ..................................................................... ЛИТЕРАТУРА...................................................................................................... 86 95 ВЫВОДЫ............................................................................................................... 94 70 1.4. Определение полного размера CpG-островка гена 3А-адаптина............ -5 Список сокращений MOPS – морфолинпропансульфокислота ДМСО – диметилсульфоксид TEMED – N, N, N’, N’- тетраметилэтилендиамин ПСА – персульфат аммония SDS – додецилсульфат натрия IPTG – изопропилтио--D-галактозид X-gal – 5-бром-4-хлор-3-индолил--галактозид ЭДТА – этилендиаминтетраацет натрия ГТЦ – гуанидинтиоционат ПААГ – полиакриламидный гель СП-ПЦР – метилчувствительная ПЦР со статистическими GC-богатыми праймерами МЧР – метилчувствительная рестриктаза МЧ-ПЦР – метилчувствительная ПЦР со специфическими праймерами ОТ-ПЦР – обратная транскрипция в сочетании с ПЦР н.п. – нуклеотидных пар -6 Введение Актуальность темы: Рак шейки матки занимает второе место среди всех онкологических заболеваний у женщин. Этиологическим фактором рака шейки матки (РШМ) признаны вирусы папиллом человека (HPV) из так называемой группы высокого риска (типы 16, 18 и другие). После вирусной инфекции РШМ может развиться через стадии дисплазии, рака in situ на протяжении нескольких лет, в течение которых в прогрессию опухоли вносят вклад возникающие и накапливающиеся изменения в клеточных генах, регулирующих такие важные для нормальной жизнедеятельности клетки процессы, как пролиферация, апоптоз, ангиогенез, поддержание генетической стабильности. В последнее десятилетие было установлено, что в многостадийном процессе образования опухолей нарушение функций клеточных генов может происходить не только в результате генетических событий (точечные мутации, делеции, амплификация и реарранжировка генов), но и в результате эпигенетических изменений, в том числе локального гиперметилирования ДНК. Аберрантному метилированию в опухолевых клетках подвергаются специфические последовательности – CpG-островки, ассоциированные с 5’ регуляторными районами многих генов. В нормальных клетках большинство CpG-островков не метилировано, а их метилирование в опухолевых клетках, как правило, сопровождается подавлением транскрипции соответствующего гена, наследуемой при делении клетки. Механизмы инициации локального метилирования CpG-островков в опухолях пока не ясны. В последнее время разработаны методы идентификации гиперметилированных районов ДНК, основанные на дифференциальном статусе метилирования CpG-островков в нормальных и опухолевых клетках. Во многих случаях с помощью этих методов были идентифицированы гены, инактивируемые в опухолях путем аберрантного метилирования ассоциированных с ними CpG-островков. Среди них обнаружены как новые гены, утрата функций которых оказалась существенной для развития -7 опухолей, так и известные гены, подавление экспрессии которых в опухолях в отсутствии инактивирующих мутаций уже было продемонстрировано. Число генов, для которых обнаружен альтернативный мутациям эпигенетический механизм инактивации в опухолях, постоянно растет, что свидетельствует о широком распространении этого механизма в процессе канцерогенеза. Цель настоящей работы: Идентификация гиперметилированных в опухолях шейки матки CpG-островков и ассоциированных с ними генов, экспрессия Исходя 1) Провести которых из может цели быть работы, подавлена были вследствие поставлены нарушения следующие GC-богатых матки методом GCметилирования ДНК. экспериментальные задачи: скрининг ДНК аберрантно-метилированных в карциномах шейки последовательностей определить метилчувствительной ПЦР со статистическими GC-богатыми праймерами, нуклеотидную последовательность обнаруженных богатых фрагментов ДНК, выявить среди них CpG-островки. 2) Провести поиск в базах данных гомологий выявленных CpG-островков с известными последовательностями ДНК. 3) В случае отсутствия гомологий CpG-островка с известными ДНК, последовательностями в базах данных, провести клонирование и определение нуклеотидной последовательности фрагментов фланкирующих CpG-островок для его локализации в геноме человека. 4) В случае установления ассоциации выявленных CpG-островков с генами, провести анализ статуса метилирования и экспрессии соответствующих генов в первичных опухолях и клеточных линиях карцином шейки матки. Научная новизна и практическая ценность работы: С помощью метода метилчувствительной ПЦР со статистическими GCбогатыми праймерами было выявлено 7 GC-богатых фрагментов ДНК длиной от 300 до 1200 пар оснований, пять из которых (более двух третей) -8 обладают свойствами CpG-островков. Из пяти выявленных CpG-островков два оказались непредставленными в опубликованных версиях генома человека: фрагмент 26 был представлен неполностью (отсутствовала область, фланкирующая 5' конец гена 3А-адаптина), фрагмент 22 до сих пор отсутствует в опубликованных базах данных. В работе впервые показано подавление экспрессии мРНК гена 3Аадаптина в клеточных линиях рака шейки матки. Продукт гена 3Аадаптина представляет собой одну из субъединиц адаптерного комплекса АР-3, вовлеченного во внутриклеточный транспорт белков. Показана возможность восстановления экспрессии мРНК 3А-адаптина под действием деметилирующего агента 5-азацитидина, что указывает на связь процессов метилирования и транскрипции гена. Впервые определена нуклеотидная последовательность района, прилегающего к 5’ концу гена. Установлены размер первого экзона гена 3А-адаптина и размер CpG-островка, ассоциированного с геном. CpG-островок гена 3А-адаптина включает 5’ нетранскрибируемый район гена, первый экзон и начало первого интрона. Теоретическое значение работы заключается в получении новых данных об участии клеточных генов в механизме злокачественной трансформации под действием вирусов папиллом человека. Обнаруженное подавление экспрессии гена 3А-адаптина в клетках карцином шейки матки указывает на необходимость дальнейшего исследования роли белковых комплексов, вовлеченных в эндо/экзоцитоз белков, в канцерогенезе. Показана возможность идентифицикации CpG-островков, до сих пор не представленных последовательностей в опубликованных генома человека, версиях с нуклеотидных метода помощью метилчувствительной ПЦР со статистическими GC-богатыми праймерами, что позволяет получить информацию о GC-богатых трудноклонируемых районах генома человека.

-9 Метилирование ДНК Распространение метилирования ДНК.

Метилирование оснований в ДНК было открыто свыше 50 лет назад и наблюдается практически во всех классах живых организмов. ДНК прокариот содержит модифицированные основания N6-метиладенин и 5метилцитозин, тогда как для эукариот характерно наличие в основном 5метилцитозина. Он присутствует в ДНК грибов и растений (Finnegan et al. 2000;

Martienssen and Colot 2001). В царстве животных наблюдается широкий спектр уровня метилирования генома. На одном из полюсов располагается нематода Caenorhabditis elegans, чей геном лишен 5-метилцитозина и не кодирует соответственно ДНК-метилтрансферазы. Рядом с ней располагается плодовая мушка Drosophila melanogaster. Долгое время считали, что ее геном также не подвергается метилированию. Однако у нее имеется ген, кодирующий белок, гомологичный ДНК-метилтрансферазам млекопитающих (Hung et al. 1999;

Tweedie et al. 1999). Недавно было показано, что 5-метилцитозин в ДНК D. melanogaster присутствует в очень малых количествах (Gowher et al. 2000;

Lyko et al. 2000). На противоположной стороне от C. elegans находятся позвоночные животные. Их геном имеет самый высокий уровень 5-метилцитозина во всем животном царстве. Метилирование ДНК у позвоночных настолько широко распространено в геноме, что говорят о его тотальном метилировании. У млекопитающих 5-метилцитозин в геноме встречается практически только который в составе с CpG динуклеотида. вероятностью При этом количество CpG динуклеотидов снижено из-за высокой мутабильности 5-метилцитозина, высокой подвергается спонтанному дезаминированию и превращению в тимин. Это обстоятельство привело в процессе эволюции к многочисленным заменам пар G:C на A:T, в результате чего в геноме млекопитающих динуклеотидов CpG в ~ 5-раз меньше, чем следовало бы ожидать (Gardiner-Gardner and Frommer 1987). У человека - 10 ~80% всех CpG динуклеотидов метилировано, и эти метилированные CpG динуклеотиды рассредоточены по геному в виде одиночных сайтов (Bird 1995). В то же время в геноме позвоночных существуют скопления неметилированных CpG динуклеотидов, именуемых CpG-островками (у человека ~20% от всего числа CpG динуклеотидов). Эти последовательности обладают длиной от 0.5 до 5 т.п.н. (в среднем 1 т.п.н.), встречаются приблизительно один раз на 100 т.п.н., имеют высокую плотность CpG динуклеотидов (близкое к расчетному 1:16), их GC состав превышает 0.55, а отношение экспериментально найденного числа CpG к теоретически возможному составляет не менее 0.6 (Antequera and Bird 1993;

Takai and Jones 2002). На основании компьютерного анализа в геноме человека предсказано существование 29 тыс. CpG-островков (Lander et al. 2001;

Venter et al. 2001). CpG-островки расположены вблизи генов, преимущественно в 5’ области (регуляторные последовательности, промоторы, последовательности первого экзона). Считается, что ~60% человеческих генов содержат CpG-островки (Antequera and Bird 1993). Они имеются, по-видимому, у всех генов, выполняющих базовые клеточные функции (гены "домашнего хозяйства"), и у ~40% генов, выполняющих специализированные функции (тканеспецифические гены). Большинство из CpG-островков остаются неметилированными на всех стадиях развития организма и во всех типах тканей, даже когда ассоциированный с ними ген не функционирует. Например, тканеспецифические гены человека -глобин (Bird et al. 1987) и 2(1)-коллаген (McKeon et al. 1982) имеют CpG-островки, которые остаются неметилированными во всех протестированных тканях, независимо от статуса экспрессии гена. В то же время в клетке может происходить метилирование CpG-островка, что сопровождается стабильной инактивацией связанного с ним гена. Так, во время развития метилирование CpG-островков наблюдается при установлении геномного импринтинга и инактивации Х - 11 хромосомы (см. обзор Bird 2002), а также наблюдается при патологических процессах, например при канцерогенезе. Считается, что метилирование CpG-островков в регуляторных областях приводит к перестройке хроматина в неактивное состояние, что вызывает инактивацию транскрипции метилированного гена (см. обзор Baylin and Herman 2000;

Jaenisch and Bird 2003). Показано, что важную роль в этом играет семейство метил-CpG-связывающих белков, привлекая к метилированному локусу ДНК гистоновые деацетилазы, которые, в свою очередь, удаляют ацетильные группы у гистонов в составе нуклеосом. Такая модификация гистоновых белков приводит к превращению открытой, транскрипционно-активной структуры хроматина в закрытую, транскрипционно-неактивную (рис. 1).

Рисунок 1. Влияние метилирования ДНК на структуру хроматина. При ацетилированных ассоциируется распознаются с гистонах хроматин имеет открытую конфигурацию, которые которая цитозины привлекают транскрипционной активностью. белками Метилированные метил-CpG-связывающими (MBDs), гистоновые деацителазы (HDACs) в район метилированной ДНК. Это приводит к перестройке хроматина в недоступную для транскрипционного аппарата клетки форму (по Worm and Guldberg 2002).

- 12 В тоже время транскрипция может регулироваться метилированием одиночных CpG динуклеотидов, расположенных в области промотора в зоне сайта связывания ряда транскрипционных факторов. Метилирование в этом случае имеет относительно локальный характер, препятствуя связыванию чувствительных к метилированию факторов транскрипции, и варьирует в широких пределах в разных тканях. В настоящий момент известно около 20 метилчувствительных транскрипционных факторов. Например, такое сайтспецифическое метилирование и ассоциированная с ним инактивация транскрипции наблюдается в случае с промотором GK-интерферона (Melvin et al. 1995) и участком связывания CREB (cyclic AMP response elementbinding protein) промотора гена -глобина (Iguchi-Ariga et al. 1989). Подобная регуляция может наблюдаться как для генов, обладающих CpG-островками, так и для тканеспецифических генов, их не имеющих. Однако роль метилирования в этом случае ограничивается влиянием на доступность сайта связывания чувствительному к метилированию транскрипционному фактору и реализуется только при наличии в клетке соответствующего белкового фактора.

Функция метилирования ДНК.

Наиболее общей функцией метилирования является участие в клеточном "иммунитете". Для бактерий оно характерно как элемент системы метилирования-распознавания "свой-чужой", что дает клетке возможность отличать свой генетический материал от инородных молекул, проникших в клетку. Это позволяет поддерживать генетическую стабильность вида. Иногда один фермент выполняет и метилазную, и эндонуклазную функцию, но в большинстве случаев эти активности разделены между двумя ферментами, один из которых метилирует определенный сайт ДНК, а другой расщепляет. При этом метилазы «метят» специфические последовательности собственной ДНК, а чувствительные к метилированию рестрикционные эндонуклеазы узнают и расщепляют те из последовательностей, которые соответствующей метки не имеют, т.е чужеродную ДНК. Таким способом - 13 бактериальная клетка защищается против чужеродной ДНК. Например, последовательность проникшего в бактериальную клетку фага расщепляется в определенных сайтах специфическими эндонуклеазами, в то время как те же последовательности в собственной ДНК клетки защищены от расщепления, так как метилированы (Noyer-Weidner and Trautner 1993). Роль метилирования ДНК как компонента клеточного "иммунитета", предназначенного для избавления от "ненужной" ДНК (уничтожение или подавления ее функций), сохраняется и у эукариот, но конкретные механизмы реализации этой задачи могут отличаться. Так, в клетках грызунов и человека посредством метилирования происходит стабильное подавление транскрипции интегрированных вирусных последовательностей и транспозонов, что предотвращает их дальнейшие распространение по геному (Barlow 1993;

Bestor and Tycko 1996), а у мышей часто происходит инактивация трансгенов (Sasaki et al. 1993). Однако роль метилирования у эукариот не ограничивается защитой клетки от потенциально опасной ДНК. Предполагается, что при усложнении генома в ряду от низших эукариот к высшим сводилась происходила к функциональная активности переориентация потенциально системы опасных метилирования (Bird 1995). Если у беспозвоночных она в основном подавлению последовательностей ДНК (таких как вирусы и транспозоны), то у позвоночных ее назначение – еще и стабильная репрессия эндогенных генов (гены инактивированной Х хромосомы, импринтированные гены). В этом случае метилирование выступает как компенсаторный механизм для организации ДНК сложных геномов в транскрипционно-активные и неактивные области. В связи с этим, наличие метилирования является необходимым условием для процесса регуляции экспрессии генов во время развития и дифференцировки.

Метилирование во время развития Во время нормального развития и клеточной дифференцировки у млекопитающих происходит комплекс изменений в метилировании ДНК - 14 (рис. 2). В зиготе (сразу после оплодотворения) материнские и отцовские хромосомы пространственно обособлены, и их деметилирование происходит Деметилирование De novo метилирование Поддерживающее метилирование Взрослое животное Гамета Зигота Гамета Плацента ЭСК Гамета Соматические клетки Гамета Бластоциста ППК Рисунок 2.

Схематическое изображение временных изменения в уровне метилирования ДНК в клетках млекопитающих во время развития (по Turker 1999). ППК – примордиальные половые клетки, ЭСК – эмбриональные стволовые клетки.

в разное время (Mayer et al. 2000). При этом отцовские хромосомы деметилируются в течение шести – восьми часов после оплодотворения независимым от репликации путем, тогда как деметилирование материнских хромосом охватывает стадии второго и третьего дробления и происходит в процессе репликации. У мышей в результате этого процесса уровень метилирования генома падает до 30% от наблюдаемого в соматических клетках (Kafri et al. 1992). После имплантации в клетках бластоцисты уровень метилирования восстанавливается, приобретая характерный для клеток взрослого организма паттерн (Turker 1999). Этот процесс начинается метилированием повторы). После de этого, novo, на затрагивающим этапе специфические паттерна последовательности в геноме ("центры метилирования" – транспозоны и втором установления метилирования, происходит распространение метилирования из центра на окружающие неметилированные сайты. Во время дифференцировки в - 15 клетках значительно снижается способность метилировать ДНК de novo (Turker et al. 1991;

Szyf et al. 1990), но сохраняется способность к распространению метилирования из "центров метилирования" (Toth et al. 1989). Однако характерной чертой клеток становится исключительно высокая способность поддерживать установленный статус метилирования в процессе репликации. Этот процесс называется поддерживающим метилированием.

Ферменты метилирования Метилирование остатка цитозина представляет собой перенос метильной группы с молекулы донора на пятый атом углерода в молекуле цитозина ферментативным путем. В клетке наблюдаются два независимых процесса метилирования, осуществляемых, по-видимому, разными ДНКметилтрансферазами. В первом случае наблюдается приобретение метилированного статуса CpG динуклеотидом, который прежде не был метилирован (реакция метилирования de novo). Во втором, происходит восстановление метилированного состояния CpG динуклеотида из полуметилированного, возникающего в результате полуконсервативной репликации ДНК, т.е. осуществляется передача по наследству характерного статуса метилирования ДНК в ряду клеточных генераций (поддерживающее метилирование). У клетках млекопитающих млекопитающих наиболее является изученным основным является фермент имеющим ДНК(цитозин-5)-метилтрансфераза 1 (Dnmt1), которая в соматических ферментом, метилтрансферазную активность (Yoder et al. 1997). C-концевой домен Dnmt1 имеет такую же структуру, что и осуществляющие метилирование цитозина ферменты бактерий, которые содержат 10 консервативных мотивов, образующих каталитический центр (Bestor et al. 1988). N-концевой домен представляет собой регуляторную область. Он содержит сигнал ядерной локализации – последовательность, направляющую фермент в локус репликации ДНК (Liu et al. 1998), и район взаимодействия с белком - 16 репликации PCNA (Chuang et al. 1997) и фактором регуляции клеточного цикла Rb (Pradhan and Kim 2002). Необходимость Dnmt1 для развития млекопитающих стволовые продемонстрирована с гомозиготной на мышах. Их эмбриональные нормально клетки инактивацией Dnmt размножаются, имея сильно деметилированный геном, но погибают при индукции дифференцировки in vitro. Мышиные эмбрионы, несущие дефектную Dnmt1, умирают при имплантации (Li et al. 1992). Показано, что Dnmt1 имеет in vitro высокое сродство к полуметилированной ДНК, как к субстрату для метилирования CpG динуклеотидов. Поэтому считается, что главная ее функция in vivo заключается в осуществлении поддерживающего метилирования, исполнение которого скоординировано в пространстве и времени с процессом репликации. В тоже время Dnmt1 проявляет небольшую способность к метилированию ДНК de novo, которая модулируется как изменениями в N-концевом домене фермента (Bestor 1992), так и вторичной структурой ДНК (Gacy et al. 1995). При этом, вероятно, именно она ответственна за распространение метилирования за пределы центров метилирования, как это показано в прямых тестах с очищенной ДНК (Carotti et al. 1998). В настоящее время у млекопитающих известно еще три гена, кодирующие белки, аминокислотная последовательность которых также содержит метилтрансферазный домен. Они были обозначены как Dnmt2 (Yoder and Bestor 1998), Dnmt3a и Dnmt3b (Okano et al. 1998). Белок Dnmt2 содержит 6 из 10 консервативных метилтрансферазных мотивов, но лишен большого N-концевого домена. Его мРНК присутствует в малых количествах во всех типах клеток, но, несмотря на наличие метилтрансферазного домена, выявить у Dnmt2 какой-нибудь метилтрансферазной активности на настоящий момент не удалось (Yoder and Bestor 1998). Dnmt3a и Dnmt3b экспрессируются в больших количествах в эмбриональных стволовых клетках, но в тканях взрослого организма их экспрессия подавлена. Их С-концевой домен аналогичен цитозин - 17 метилирующим ферментам, тогда как последовательность N-концевого отличается от аналогичного домена Dnmt1. Было показано, что обе эти метилтрансферазы обладают одинаковой способностью метилировать полуметилированную и неметилированную ДНК (Okano et al. 1998). Мутация в каталитических центрах Dnmt3a и Dnmt3b лишает эти ферменты способности к de novo метилированию in vivo (см. обзор Hsieh 1999). Инактивация Dnmt3a и Dnmt3b в эмбриональных стволовых клетках показала их необходимость для et нормального al. 1999). В эмбрионального той же развития было млекопитающих (Okano работе продемонстрировано, что эти метилтрансферазы имеют как общие сайты метилирования, так и строго специфичные. Так, Dnmt3b участвует в метилировании минисателлитных повторов центромеры, тогда как Dnmt3a нет. Исследование уровня мРНК трех человеческих метилтрансфераз DNMT1, DNMT3a и DNMT3b показало, что они проявляют координированный характер экспрессии, как в эмбриональных клетках, так и в тканях взрослого организма (Robertson et al. 1999). По всей видимости, в процессе метилирования ДНК de novo участвуют все три метилтрансферазы, специфически распределяя роли в установлении паттерна метилирования генома. Для установления импринтинга в женских половых клетках показана также необходимость присутствия белка DNMT3L, который не имеет метилтрансферазной активности и колокализуется вместе с DNMT3a и DNMT3b, в то время как за поддержание этого импринтинга ответственна ооцит-специфическая изоформа DNMT1o (Jaenisch and Bird 2003).

Метилирование как динамический процесс Статус метилирования ДНК в любой клетке устанавливается в результате сочетания динамических процессов метилирования и деметилирования. В популяции клеток CpG динуклеотиды могут иметь один из трех профилей метилирования (Turker 1999): полностью метилированные (уровень метилирования почти 100%), неметилированные (около 0%) и - 18 частично метилированные (между 0 и 100%), – представляя собой усредненный показатель метилирования, определенный анализом большого числа аллелей. В случае импринтированных генов и генов инактивированной в женских клетках хромосомы Х промежуточный уровень метилирования (около 50%) отражает альтернативное состояние метилирования двух аллелей. Такая наследуемая совокупность всех неметилированных, частично метилированных и полностью метилированных CpG динуклеотидов для данной области ДНК получила название паттерна метилирования. В первых экспериментах, показавших существование воспроизведения статуса метилирования искусственно метилированной ДНК при делении клеток, также наблюдалось относительно низкая точность этого процесса (Wigler et al. 1981). После многих клеточных генераций, исследуемая ДНК сохранила метилирование, но на значительно меньшем уровне, чем это было в начале. Количественные исследования эндогенных CpG динуклеотидов подтвердили относительную стабильность паттерна метилирования (Riggs et al. 1998). Клеточные клоны, в которых изучаемые сайты первоначально были неметелированными, метилированными приобретали CpG метилирование, его теряли. а клоны с динуклеотидами Динамические изменения в деталях статуса метилирования исследовались в области промотора мышиного гена Aprt (Turker 1999). Этот ген обладает CpGостровком, который включает промотор, первый и второй экзоны и первый интрон. Было показано, что статус метилирования CpG динуклеотидов, расположенных в непосредственной близости от начала CpG-островка вне его границ, не однороден в клеточной популяции, тогда как CpG динуклеотиды в составе всех сайтов метилчувствительной рестриктазы HpaII внутри CpG-островка не метилированы. На основании многочисленных экспериментальных данных была предложена модель, объясняющая образование и поддержание паттерна метилирования 5' области гена Aprt (рис. 3). В раннем эмбриогенезе для 5' области гена Aprt характерно неметилированное состояние. Предполагают, что процесс метилирования - 19 начинается после имплантации бластоцисты de novo метилированием в так называемом центре метилирования, активную часть которого составляют две копии B1 элементов, повторяющихся последовательностей грызунов, аналогичных повторам Alu у приматов. Затем метилирование распространяется «ниже» по направлению к промотору гена.

А Б В Г Рисунок 3. Модель возникновения и поддержания паттерна метилирования 5' области гена Aprt мыши. А. На ранних стадиях эмбриогенеза CpG динуклеотиды в составе сайтов рестрикции фермента HpaII (H1-H3) не метилированы. Б. После имплантации происходит de novo метилирование центра метилирования (МС), содержащего В1 повторы и сайт Н1, и распространение метилирования за пределы этой области. В. В некоторых случаях метилирование может распространяться вплоть до сайта Н2, расположенного в непосредственной близости от начала CpG-островка. Г. Наличие сайтов связывания транскрипционного фактора Sp1 препятствует распространению метилирования на область промотора. Такое блокирование метилирования может распространяться от области промотора в сторону центра метилирования и приводить к деметилированию сайта Н2, препятствуя поддерживающему метилированию (по Turker 1999).

Однако, сайты связывания транскрипционного фактора Sp предохраняют промотор от экспансии метилирования, блокируя процесс вблизи сайта метилчувствительной рестриктазы НpaII. Как показано, делеции или мутации в сайтах Sp1 приводят к метилированию CpG-островка гена (Macleod et al. 1994;

Mummaneni et al. 1995). В силу конкуренции между - 20 импульсами метилирования, исходящими из центра метилирования, и импульсами деметилирования, исходящими из структур промотора, этот сайт находится в динамически изменяющемся состоянии (метилирован менее чем на 50%). Таким образом, в установлении статуса метилирования участвуют два взаимоисключающих друг друга процесса: деметилирование ранее метилированных CpG динуклеотидов и de novo метилирование неметилированных CpG динуклеотидов. И, хотя, по всей видимости, паттерн метилирования ДНК в клетке в процессе развития передается по наследству точно (см. обзор Bird 2002), на уровне одиночных CpG динуклеотидов статус метилирования может варьировать. Поэтому представляется возможным нарушение профиля метилирования при сдвиге равновесия, вызванного усилением или ослаблением одного из двух противоборствующих процессов и развивающегося на протяжении нескольких клеточных поколений. Именно это, по всей видимости, и происходит при старении и злокачественной трансформации клетки.

Роль метилирования в канцерогенезе По отношению к нормальной регуляции метилирования ДНК выделяют два нарушения, имеют в являющиеся характерными по для геному и опухолей. потерю локальное Трансформированные и опухолевые клетки практически всех типов одновременно метилирования широкораспространенную метилированных нормально сайтах гиперметилирование CpG-островков, неметилированных в нормальных клетках (рис. 3). Каждое из этих нарушений может иметь глубокие последствия для функционирования генома, и взаимодействие между ними представляется особенно важным для опухолевой прогрессии. Наиболее явно это проявляется при стабильной эпигенетической инактивации экспрессии генов-супрессоров, которая оказывает такой же эффект, как и генетические нарушения. По аналогии с мутациями, этот феномен был назван эпимутацией, т.е. эпигенетический эквивалент генетической инактивирующей мутации.

- 21 А.

Б.

Рисунок 4. Изменения системы метилирования в опухоли. Показана структура типичного гена, содержащего CpG-островок: экзоны представлены пронумерованными прямоугольниками, CpG динуклеотиды – кружками (белые – неметилированные, черные – метилированные);

DMTase – ДНК-метилтрансфераза;

? – регуляторные факторы. А. В нормальных клетках редкие CpG динуклеотиды вне CpG-островка в большой степени метилированы, тогда как внутри CpG-островка CpG динуклеотиды остаются неметелированными. Такое положение позволяет осуществлять транскрипцию гена (показана стрелкой). Б. В опухолевых клетках происходит локальное гиперметилирование CpG динуклеотидов в области CpG-островка и деметилирование вне его границ. Первое изменение ведет к блокированию транскрипции. Также может происходить нарушение в функционировании ДНК-метилтрансферазы, что сопровождается увеличением активности фермента и возможными изменениями в регуляции белка путем повреждения регуляторных факторов (по Herman 1999).

В тоже время вклад метилирования ДНК в канцерогенез не ограничивается исключительно эпигенетическими нарушениями. Как было сказано ранее, 5-метилцитозин обладает значительной нестабильностью и способен выступать в качестве горячей точки мутагенеза. Также следует отметить, что метилирование подавляет процесс гомологичной рекомбинации и, таким образом, глобальное деметилирование генома может способствовать генетической нестабильности опухолевой клетки.

- 22 Генетическая роль метилирования ДНК в канцерогенезе Мутации в опухолевых клетках. 5-метилцитозин подвергается спонтанному дезаминированию в результате тепловых флуктуаций даже в обычных условиях (Bird 1995). В результате этого процесса возникает остаток тимина, и в ДНК происходит образование неканонической пары оснований G:T, которая является мишенью для системы репарации. Хотя ферменты репарации предпочтительно удаляют тимин из этой пары и восстанавливают исходную последовательность (пара G:C), тем не менее с небольшой вероятностью мутации возникают, и происходит замена пары G:C на A:T. Именно нестабильностью 5-метилцитозина объясняется низкий уровень CpG динуклеотидов в геноме млекопитающих, в результате того, что на протяжении эволюции происходили многочисленные замены пар G:С на А:Т (Gardiner-Gardner and Frommer 1987). Так, в сутки в каждой клетке человека происходит ~100 реакций дезаминирования 5-метилцитозина, многие из которых приводят к заменам пар G:С на А:Т. Например, из ~300 мутаций гена-супрессора ТР53 (главного хранителя целостности генома), зарегистрированных в опухолях человека разного происхождения, 25-30% относятся к мутациям данного типа (Pfeifer 2000). Таким образом, спонтанный мутагенез (в отсутствие каких-либо экзогенных и эндогенных агентов, повреждающих ДНК) идет в клетках человека весьма активно и повреждает многие гены, в том числе и гены-супрессоры опухоли. Нестабильность генома. Одним из характерных признаков опухолевой клетки является тотальное деметилирование ДНК. Этот процесс, по-видимому, оказывает крупномасштабное дестабилизирующее воздействие на геном. Так, гипометилирование ДНК в эмбриональных мышиных клетках, лишенных гена Dnmt1, приводит к десятикратному возрастанию частоты образования делеций и инсерций в уникальных генах (Chen et al. 1998). Искусственное метилирование участков ДНК, являющихся горячими точками рекомбинаций у грибов, ингибирует гомологичную рекомбинацию во время мейоза (Maloisel and Rossignol 1998). Хотя приведенные - 23 наблюдения получены при исследовании нормальных клеток, и прямых причинно-следственных отношений между гипометилированием ДНК и хромосомными системы вероятной. В тоже время локальное гиперметилирование промоторных областей ряда генов, содержащих CpG-островки, и сопровождаемая этим инактивация экспрессии, также может способствовать дестабилизации генома. Оказалось, что этот процесс предшествует и, по-видимому, является необходимым для некоторых генетических событий, облегчающих прогрессию опухоли. Наиболее прямая на нынешний день связь между генетическим нарушением и предшествующей ему эпигенетической инактивацией описана для эпимутации гена системы репарации hMLH1 и мутациями в микросателлитных повторах в опухолях кишечника, отличающихся MIN+ ("microsatellite instability") фенотипом (Herman et al. 1998). При этом гиперметилирование hMLH1 происходит на ранних стадиях прогрессии, прежде чем появляются нарушения в микросателлитах (Esteller et al. 1999). В опухолях человека также продемонстрирована связь между гиперметилированием промотора другого гена репарации ДНК MGMT и возникновением мутаций (G:C – A:T транзиция) в гене супрессоре TP53 (Zhang et al. 2003) и протоонкогене K-ras (Esteller et al. 2000). При этом, как и в случае hMLH1, эпимутация MGMT предшествует появлению мутаций в генах TP53 и K-ras. аномалиями для опухолевых при клеток не выявлено, весьма нестабильность генома, возникающая в результате такого рода нарушения метилирования, представляется канцерогенезе Эпигенетическая роль метилирования ДНК в канцерогенезе Общее деметилирование генома. Одним из первых обнаруженных нарушений в опухолевых клетках оказалось снижение общего уровня метилирования геномной ДНК, которое происходит на ранних стадиях прогрессии опухоли (см. обзор Baylin et al. 1998). Возможная связь гипометилирования ДНК с трансформацией клеток показана в экспериментах - 24 на грызунах. У животных, лишенных S-аденозил-метионина в пище, дефицит донора метильных групп приводил к гипометилированию ДНК и последующему возникновению опухолей печени (Pogribny et al. 1995). Однако, несмотря на столь ясную ассоциацию гипометилирования ДНК с образованием канцерогенного опухолей, эффекта конкретные остаются механизмы реализации его невыясненными. Предполагают существование двух типов последствий деметилирования генома: локальные нарушения, влияющие на активность отдельных генов, и общее изменение, затрагивающее структуру хроматина. Имеются отдельные наблюдения, свидетельствующие о том, что этот процесс в клетках опухолей человека и животных может изменять характер экспрессии различных генов и специфически активировать отдельные онкогены, в частности K-RAS в карциномах легких и толстого кишечника (см. обзор Baylin et al. 1998). Как и в случае общего деметилирования, эти локальные ген-специфические изменения также происходят на ранних этапах, иногда задолго до появления опухоли, в частности в доброкачественных полипах, которые служат предшественниками опухоли. В тоже время, такого рода изменения в опухолевой клетке не носят общего характера. Четкая взаимосвязь между характером метилирования ДНК и регуляцией экспрессии наблюдается для промоторов, содержащих CpG динуклеотиды, как одиночные, так и в составе CpG-островков. Так как подавляющее большинство CpG-островков в нормальных клетках не метилировано, то, следовательно, мишенью для гипометилирования в опухолевых клетках они быть не могут. Что касается генов с одиночными CpG в динуклеотидами клетке в промоторной области, то деметилирование определенных сайтов может способствовать активации гена, но только, если присутствует специфический транс-активирующий транскрипционный фактор. Именно этим, по всей видимости, объясняется ограниченное количество генов, активированных в опухолях в результате гипометилирования генома.

- 25 С косвенно, другой стороны, деметилирование структуру генома как Как ставит феномен известно, хроматина их в крупномасштабный может оказывать воздействие на экспрессию генов и видоизменяя ДНК хроматина. что последовательности (гетерохроматина) неактивного, компактного интенсивно метилированы, функциональном отношении в угнетенное положение (блок транскрипции, поздняя репликация). Тотальное деметилирование может кардинально повлиять на структуру хроматина, степень его конденсации, время репликации, что может повлечь за собой изменения в статусе экспрессии различных генов. О возможности таких нарушений свидетельствует ряд наблюдений. Так, в частности, показано, что гипометилирование генома, обусловленное воздействием деметилирующего агента 5-азацитидина, ведет к трансформации некоторых клеточных культур (Rainier and Feinberg 1988), а также к нарушениям процесса расхождения хромосом во время митоза (см. обзор Baylin et al. 1998). Локальное распространяется гиперметилирование на относительно в опухолевой часть (20%) клетке CpG небольшую динуклеотидов, которые образуют CpG-островки, располагаются, как правило, вблизи регуляторных областей генов и имеют в нормальных клетках неметилированный статус. Исследования последнего десятилетия показали, что инактивация генов супрессоров опухоли, ассоциированная с гиперметилирование промоторной области, является таким же характерным признаком опухолей человека, как и генетические нарушения, и служит альтернативным механизмом потери функции генов супрессоров (Baylin et al. 1998;

Herman 1999;

Лихтенштейн и Киселева 2001). Ниже приведена краткая характеристика некоторых генов, инактивация которых в опухолевых клетках происходит во многих случаях путем гиперметилирования регуляторной области. Ген кальцитонина. Первый ген, для которого было показано, что он имеет в промоторе CpG-островок, гиперметилированный у человека в - 26 лимфомах и при раке легкого (Baylin et al. 1986). Дальнейшие исследования продемонстрировали, что CpG-островок кальцитонина интенсивно метилирован во многих солидных опухолях человека, при лейкозах и в клеточных линиях, трансформированных различными вирусами (см. обзор Herman 1999). Хотя роль этого гена в процессе канцерогенеза до сих пор остается не выясненной, наблюдаемые в нем изменения характера метилирования инициировали поиски функционально более значимых мишеней аберрантного метилирования CpG-островков. Ген Rb1. Ген ретинобластомы – первый классический ген-супрессор, у которого обнаружено гиперметилирование CpG-островка. Примерно у 1015% больных со спорадической формой ретинобластомы происходит гиперметилирование CpG-островка, расположенного в промоторе Rb1. Также показано, что метилирование CpG-островка Rb1 in vitro напрямую блокирует активацию 1993). Также промотора было транс-активирующими что транскрипционными CpG-островка в факторами и значительно снижает уровень экспрессии (Ohtani-Fujita et al. показано, метилирование промоторной области Rb1 наблюдается в тех аденомах гипофиза, клетки которых не экспрессируют pRb (Simpson et al. 2000). Хотя мутации и делеции гена Rb1 отмечают при многих формах рака, гиперметилирование промоторного CpG-островка обнаружено только в ретинобластомах и аденомах гипофиза. Ген VHL (von Hippel-Lindau). Ген-супрессор, повреждения которого часто регистрируют при светлоклеточной карциноме почек. Примерно в 20% случаев спорадической светлоклеточной карциномы почек гиперметилирование CpG-островка в промоторе одного аллеля этого гена сочетается с соматическими мутациями или потерей другого аллеля (Herman et al. 1994). Подобно гену Rb1, гиперметилирование CpG-островка VHL наблюдается только в двух типах опухолей, а именно в светлоклеточной карциноме почек и гемангиобластоме, и не обнаруживается в других типах опухолей, включая и другие типы опухоли почки.

- 27 Ген р16 (INK4A) кодирует ингибитор циклинзависимой киназы, блокирующий сигнальный путь cyclin D - Rb. Утрата этого белка или его инактивация ведут к тому, что клетка теряет контроль над клеточным циклом: циклинзависимая киназа фосфорилирует Rb, в результате чего из неактивного комплекса высвобождаются факторы транскрипции Е2F. В итоге активируются гены, обусловливающие вхождение клетки в фазу S клеточного цикла. При этом повреждение данного сигнального пути происходит практически во всех опухолях, путем нарушения функций либо гена р16, либо гена Rb1, но никогда сразу обоих названных генов. Случаи гиперметилирования CpG-островка в 5’-области гена р16 составляют от 20 до 67% солидных опухолей человека разной локализации (см. обзор Baylin et al. 1998). Локус INK4A/ARF. Кодирует два различных белка (р16 и ARF), которые в качестве супрессоров играют существенную роль в регуляции клеточного цикла. Первый участвует в Rb-сигнальном пути, а второй ингибирует белок MDM2, индуцирующий деградацию р53, и, таким образом, повышает уровень функционального р53. Промотор ARF содержит CpG-островок, который гиперметилирован в клеточных линиях рака толстого кишечника (см. обзор Herman 1999). Кроме того, в промоторе гена ARF, присутствует p53-зависимый элемент, обеспечивающий подавление транскрипции этого гена в ответ на повышение уровня p53. Таким образом, метилирование промотора ARF способно нарушить регуляцию нормального уровня p53. Ген р15 (INK4В). Расположен вблизи гена р16, обладает высокой гомологией с ним, также является ингибитором циклинзависимой киназы и экспрессируется в ответ на рост-ингибирующее действие TGF-. В отличие от гена р16 гиперметилирование промоторного CpG-островка гена р15 в солидных опухолях – событие редкое, тогда как в гематопоэтических новообразованиях оно становится доминирующим способом инактивации данного гена-супрессора (см. обзор Baylin et al. 1998).

- 28 Семейство гена p53 (ТР53). Ген p53 играет важную роль «хранителя генома» и нарушения в его функционировании идентифицированы не менее чем в половине случаев рака человека. Этот ген не содержит в своей промоторной части CpG-островка, поэтому, вклад метилирования в инактивацию p53 обусловлен не эпигенетическим, как для других генов, а генетическим механизмом. Одиночные метилированные CpG динуклеотиды в значительном числе присутствуют в кодирующей последовательности гена и, в силу гипермутабельности 5-метилцитозина, участвуют в замене пары G:C на A:T. Так примерно треть из более, чем 300 мутаций, зарегистрированных в гене p53, принадлежит к этому типу. Для гена p73 (гомолога p53), содержащего в своей промоторной части типичный CpG-островок, мутации, столь характерные для p53, не свойственны. Гиперметилирование этого гена и ассоциированная с ним потеря экспрессии обнаружены при остром лимфобластном лейкозе и лимфомах (см. обзор Herman 1999). Ген E-cadherin. Семейство Они генов кадхеринов кодирует белки, расположенные на клеточной поверхности и принимающие участие в межклеточных контактах. являются регуляторами клеточного размножения и дифференцировки, воздействуя на активность ряда генов через сигнальный путь -катенин - транскрипционный фактор Lef/Tcf. Асcоциация рядом расположенных эпителиальных клеток посредством мостика из молекул Е-кадхерина инициирует анти-ростовой сигнал, направленный внутрь клетки (см. обзор Ровенский 1998). E-cadherin – генсупрессор, инактивация которого способствует приобретению опухолевой клеткой свойств инвазивности и метастазирования. Инактивация транскрипции этого гена обнаружена во многих опухолях человека, при этом в ряде случае оно обусловлено гиперметилированием CpG-островка этого гена, в частности в опухолях молочной железы, желудка, предстательной железы, печени и щитовидной железы (Graff et al. 1995;

Herman 1999).

- 29 Ген рецептора эстрогенов (ER) является геном-супрессором, модулирующим клеточный рост и дифференцировку. Функциональная инактивация ER считается главной причиной гормональной резистентности клеток рака молочной железы (Baylin et al. 1998). В промоторной области гена ER имеется CpG-островок, гиперметилирование которого характерно для опухолей молочной железы, не экспресирующих эстрогеновый рецептор (см. обзор Herman 1999). Отмечена четкая ассоциация гиперметилирования CpG-островка гена ER со многими видами опухолей человека, в частности с карциномой толстого кишечника и лейкемиями. Ген HIC-1 (hypermethylated in cancer) кодирует белок, относящийся к семейству транскрипционных факторов с последовательностью «цинкового пальца». Предположительно является геном-супрессором. Гиперметилирование CpG-островка этого гена отмечено во многих опухолях человека и ассоциировано со снижением его экспрессии. В промоторной зоне HIC-1 содержится сайт связывания р53, что предполагает его участие в этом сигнальном пути (Baylin et al. 1998). Ген GST-. Глутатион-S-трансфераза класса относится к группе изоферментов, играющих важную роль в защите клеток от цитотоксических и канцерогенных агентов. Гиперметилирование промоторной зоны гена присутствует в подавляющем числе случаев рака простаты, является причиной потери экспрессии GST- в этих опухолях и представляет собой характерный маркер этой формы опухоли (Lee et al. 1994). Метилирование гена GST- обнаружено также при раке печени (Zhong et al. 2002), молочной железы и почек (Esteller et al. 1998), но очень редко в других опухолях. Ген BRCA1. Белок, кодируемый этим геном, участвует в репарации повреждений ДНК. Исследования гена-супрессора BRCA1, повреждение которого увеличивает вероятность возникновения рака молочной железы, показало, что при спорадических формах этого рака в данном гене отсутствуют мутации. Это заставило предположить участие метилирования в его инактивации. Действительно, гиперметилирование CpG-островка этого - 30 гена было продемонстрировано в ряде случаев рака молочной железы, в клеточных линиях рака молочной железы, а также в клетках рака яичников. В противоположность гену BRCA1, гиперметилирвание CpG-островка его функционального гомолога BRCA2 в тех же опухолях не обнаружено (см. обзор Herman 1999). Ген MLH1. Продукт этого гена участвует в репарации неспаренных оснований, возникающих в результате ошибок ДНК полимеразы. Инактивация MLH1 ведет к накоплению мутаций в коротких повторяющихся (микросателлитных) последовательностях. Его мутации обнаруживают у больных наследственным неполипозным раком толстой и прямой кишки. В случае спорадической формы этого рака потеря функциональной активности гена MLH1 часто связана с метилированием его CpG-островка. Установлено, что микросателлитная нестабильность при спорадической форме рака толстого кишечника, эндометрия и желудка в большинстве случаев также обусловлена этой причиной (см. обзор Herman 1999). Ген MGMT кодирует фермент О6-метилгуанин-метилтрансферазу, принимающую участие в репарации ДНК. Ранние работы не обнаруживали взаимосвязи между метилированием и потерей экспрессии данного гена в культурах клеток, однако, в дальнейшем гена было показано, что с гиперметилирование CpG-островка MGMT ассоциировано инактивацией его транскрипции и сопровождается перестройкой структуры хроматина в неактивное состояние (см. обзор Herman 1999). Метилирование регуляторной области MGMT характерно для рака толстого кишечника, легкого, некоторых типов лимфом и опухолей мозга (Esteller et al. 1999), а также для карцином печени (Zhang et al. 2003). У человека показана корреляция между гиперметилированием промотора MGMT и последующим за этим возникновением мутаций (замена G на A) в гене супрессоре опухолевого роста TP53 в опухолях толстого кишечника (Esteller et al. 2001), при раке легкого (Wolf et al. 2001) и печени (Zhang et al. 2003), а также в протоонкогене K-ras в опухолях толстого кишечника (Esteller et al. 2000).

- 31 Ген CACNA1G кодирует белок кальциевого канала Т-типа (Toyota et al. 1999). Расположен на хромосоме 17 в зоне 17q21, где при различных формах злокачественных новообразований человека отмечен феномен потери гетерозиготности. Ген экспрессируется в нормальной слизистой толстого кишечника и в клетках костного мозга, но в опухолях толстой и прямой кишки, желудка и при остром миелоидном лейкозе его транскрипция подавлена из-за метилирования CpG-островка. Предполагают, что CACNA1G регулирует потоки кальция в клетке, что имеет непосредственное отношение к клеточной пролиферации и апоптозу. Ген THBS1. Ген тромбоспондина-1, кодирующий ингибитор ангиогенеза, экспрессируется во многих тканях и регулируется продуктами генов ТР53 и RB. Снижение экспрессии гена THBS1 отмечено во многих опухолях, а восстановление его экспрессии в клетках рака молочной железы замедляет рост опухоли, ангиогенез и метастазирование. До сих пор не обнаружено мутаций, делеций или транслокаций этого гена в опухолях человека. Гиперметилирование активности CpG-островка и сопряженная с ним инактивация THBS1 отмечены в глиомах (Li et al. 1999). Модуляция ДНК-метилтрансфераз. Первоначально считалось, что характерным свойством трансформированных клеток является повышение активности Dnmt1 (см. обзор Baylin et al. 1998). Однако в дальнейшем было показано, возникает что как увеличенная более активность высокого корреляции этой уровня между метилтрансферазы не было результат пролиферации опухолевых клеток. Кроме того, в некоторых типах опухолей обнаружено какой-нибудь значимой метилированием CpG-островков и уровнем мРНК не только DNMT1, но и DNMT3a и DNMT3b (Saito et al. 2001;

Oue et al. 2001;

Ahluwalia et al. 2001). Хотя гиперэкспрессия экзогенной DNMT1 может привести к клеточной трансформации (Vertino et al. 1996), в опухоли, по-видимому, происходит нарушение специфичности взаимодействия фермента с ДНК. Это приводит к ошибочному метилированию CpG-островков, неметилированных в - 32 нормальных клетках.

Такие нарушения регуляции опосредованы изменениями во взаимодействии между Dnmt1 и ее регуляторами, в число которых входят как онкогены, так и гены-супрессоры опухолевого роста. Так, в экспериментах на культурах клеток показана связь между метилированием ДНК и ras-опосредованными путями передачи митогенных сигналов. Введение в мышиные адренокортикальные опухолевые клетки Y1 экзогенного негативного регулятора Ras (Gap) приводило, с одной стороны, к снижению уровня мРНК и активности Dnmt1, а с другой - к восстановлению нормального фенотипа. Последующая трансфекция в полученные таким образом ревертанты экзогенного Н-ras повышало уровень экспрессии мРНК и активности фермента и восстанавливало трансформированный фенотип (MacLeod et al. 1995). В экспериментах с клетками, трансформированными коститутивно-экспрессируемым с-fos, продукт которого расположен в цепи передачи сигнала после Ras, установлено, что подавление экспрессии Dnmt1 или ее активности восстанавливает нормальный фенотип на фоне неизменной экспрессии экзогенного с-fos (Bakin and Curran 1999). Также было установлено, что супрессор опухолевого роста Rb (регулятор клеточного цикла) взаимодействует с DNMT1, модулируя ее активность (Pradhan and Kim 2002). Показано, что при связывании Rb с DNMT1 происходит ингибирование трансферазной активности. Также продемонстрировано, что ингибитор циклин-зависимых киназ p21WAF1 может конкурировать с DNMT1 за связывание с PCNA в нормальных клетках и принимать, таким образом, опосредованное участие в модуляции активности DNMT1 (Chuang et al. 1997). В тоже время нарушение регуляции метилтрансферазной активности в опухолевых клетках не ограничивается только DNMT1. Было показано, что одновременно с DNMT1 происходит изменение специфичности также и DNMT3a (Di Croce et al. 2002) или DNMT3b (Rhee et al. 2002). Исследование слитного белка PML-RAR, который является онкогенным транскрипционным фактором, образующимся при острой промиелоцитарной лейкемии (ОПЛ) в - 33 результате транслокаций, показало, что данный белок напрямую взаимодействует с метилтрансферазами DNMT1 и DNMT3a в клеточных линиях, полученных от больных с ОПЛ (Di Croce et al. 2002). С помощью хроматин-иммунопреципитации было продемонстрировано, что DNMT1 и DNMT3a в присутствии и вместе с PML-RAR предпочтительно локализуются в области промотора гена RAR2. Это приводит к метилированию CpGостровка гена RAR2 и инактивации его транскрипции. Таким образом, нарушение нормальной регуляции метилтрансфераз является важным этапом в прогрессии опухоли.

Сравнительный анализ современных методов определения статуса метилирования ДНК.

Несмотря на отсутствие понимания механизмов нарушения метилирования ДНК в канцерогенезе, различие паттернов метилирования нормальной и опухолевой клеток широко используются для оценки широты распространения аберрантного метилирования в опухолях, для выявления генов, утрата функций которых вносит вклад в развитие опухолей, и для поиска диагностических маркеров опухолей разных типов. Методы анализа статуса метилирования CpG динуклеотидов. Применение метилчувствительных узнавания, часто используют пары эндонуклеаз рестрикции. Для эндонуклеаз, анализа статуса метилирования CpG динуклеотидов, находящихся в сайте рестрикционных являющихся изошизомерами и различающихся по чувствительности к метилированию остатков цитозина (например, пары HpaII и MspI, TaqI и Sau3A, SmaI и ХmaI). В сочетании с гибридизацией методом Саузерна или ПЦР этот способ позволяет установить, метилирован или нет сайт узнавания соответствующих рестриктаз. Применение подхода ограничено тем, что набор соответствующих изошизомеров не затрагивает всех CpGдинуклеотидов, присутствующих в исследуемой последовательности. Тем не менее, этот метод долгое время был единственным, и именно с его помощью - 34 были обнаружены и первый маркер метилирования кальцитонин и первые абберантно-метилированные гены-супрессоры Rb1 и p16. Картирование метилированных цитозиновых остатков в известной последовательности ДНК (Clark et al. 1994). Метод основан на превращении всех неметилированных остатков цитозина в остатки урацила в результате обработки ДНК бисульфитом натрия. При этом цепочки ДНК оказываются в участках модификации некомплементарными друг другу. Амплификация исследуемой последовательности с помощью ПЦР и последующее стандартное секвенирование выявляют как цитозин только те цитозиновые остатки, которые в исходной цепочке были метилированы. Преимуществом данного метода является возможность установить статус метилирования каждого CpG динуклеотида в исследуемой последовательности ДНК. Высокая чувствительность метода позволяет исследовать статус метилирования отдельных генов в раннем эмбриональном развитии (на стадии двух клеток), а также выявлять те динуклеотиды CpG в составе CpGостровков, метилирование которых необходимо и достаточно для подавления транскрипции соответствующего гена (Walsh and Bestor 1999;

Warnecke et al. 1998;

Cote et al. 1998). MSP (methylation-specific PCR) – метод, позволяющий оценивать статус метилирования группы близкорасположенных CpG динуклеотидов в составе CpG-островка. Его большим достоинством является высокая чувствительность, позволяющая анализировать метилированные аллели в присутствии большого избытка аллелей дикого типа (1 метилированный аллель на 1000 неметилированных;

Herman et al. 1996), и возможность быстро проводить анализ большого числа образцов. Как и в предыдущем методе, процедура состоит в предварительной обработке исследуемых ДНК бисульфитом конструируют последовательности, натрия. Для амплификации или модифицированной метилированные, ДНК или праймеры, содержащие избирательно амплифицирующие неметилированные остатки цитозина. Данный метод позволяет проводить - 35 скрининг статуса метилирования определенных CpG динуклеотидов в составе CpG-островка исследуемого гена в опухолях различной локализации. Таким обнаружить образом, CpG если метод картирования и метилированных достаточные для цитозиновых остатков в известной последовательности ДНК позволяет динуклеотиды, необходимые инактивации транскрипции определенного гена, то метод MSP можно использовать для быстрого исследования статуса метилирования этих CpG динуклеотидов и, соответственно, функциональной активности соответствующего гена, в различных опухолях. Методы идентификации CpG-островков, аберрантно-метилированных в опухолях. MCA (methylated CpG island amplification) – метод, позволяющий избирательно амплифицировать CpG-островки, дифференциально метилированные в нормальных и опухолевых клетках, а затем клонировать и секвенировать их (Toyota et al. 1999). ДНК вначале обрабатывают рестриктазой SmaI (сайт узнавания СССGGG не расщепляется, если он содержит 5-метилцитозин), которая дает фрагменты с “тупыми” концами. Метилированные сайты СССGGG затем расщепляют нечувствительной к метилированию рестриктазой ХmaI, которая формирует фрагменты с “липкими” концами. Именно последние могут взаимодействовать с адаптерами и быть в последующем амплифицированны. В сочетании с методом репрезентативного дифференциального анализа (RDA) (Lisitsyn et al. 1993) этот подход позволяет избирательно амплифицировать CpGостровки, аберрантно метилированные в опухолевых клетках. Таким способом в клетках рака толстого кишечника были идентифицированы и клонированы 33 последовательности, включая фрагменты известных генов (PAX6, Versican, -tubulin, CSX, OPT и др.). RLGS (restriction landmark genomic scanning) позволяет одновременно анализировать статус метилирования в геноме нескольких тысяч CpGостровков (Eng et al. 2000;

Costello et al. 2000). Суть метода заключается в - 36 разделении двухмерным электрофорезом рестрикционных фрагментов, полученных обработкой геномной ДНК несколькими рестриктазами. Вначале ДНК обрабатывают крупнощепящей рестриктазой NotI, сайты которой предпочтительно располагаются в CpG-островках и которая расщепляет только неметилированные сайты. Затем полученные фрагменты метят по концам радиоактивной меткой, рестрицируют вторым ферментом (например, EcoRV) для уменьшения их размеров и продукты гидролиза разделяют в первом направлении (в капиллярной трубке с агарозным гелем). Разделенные фрагменты NotI/EcoRV обрабатывают in situ (т.е. в геле) еще одной рестриктазой (например, HinfI) для большей фрагментации ДНК, после чего проводят электрофорез в полиакриламидном геле во втором направлении. Пластину геля авторадиографируют и в результате выявляют множество пятен, положение которых строго определено. По их интенсивности судят о степени метилирования соответствующего CpG-островка. Интенсивность пятна, принятая за нормальную, свидетельствует о неметилированном статусе обоих аллелей, наполовину сниженная – о метилировании одного из аллелей, исчезновение пятна – о метилировании обеих аллелей (соответствующий сайт не расщепляется NotI). Именно этим методом было продемонстрировано широкое распространение аберрантного метилирования CpG-островков во многих типах опухолей. СП-ПЦР (метилчувствительная ПЦР со статистическими GC-богатыми праймерами) используется для поиска CpG-островков, абберантнометилированных в опухолях (Gonzalgo et al. 1997;

Liang et al. 1998). Достоинством метода является возможность выявления ранее неизвестных CpG-островков. Метод основан на использовании статистических праймеров с GC-богатым 3' концом, амплифицирующих в неспецифических условиях GC-богатые участки генома, включая и CpG-островки. Различие в статусе метилирования фрагментов выявляют с помощью предшествующей амплификации обработки ДНК метилчувствительными рестриктазами. При использовании различных вариантов праймеров этот метод позволяет вести - 37 широкий скрининг дифференциально метилированных в нормальной и опухолевой тканях GC-богатых последовательностей (подробнее о принципе метода см. в разделе "Результаты").

Заключение.

Развившиеся в последние годы интенсивные исследования метилирования ДНК и нарушений этого процесса при канцерогенезе открывают возможности для разработки новых подходов, как для изучения механизмов канцерогенеза, так и для диагностики, мониторинга, прогноза, а возможно и терапии опухолей. В отличие от мутаций, модификация ДНК путем метилирования цитозиновых остатков принципиально обратима, так как не приводит к изменению генетического кода. Метилирование может быть устранено, а функционирование генов восстановлено, хотя бы частично, при обработке опухолевых клеток деметилирующими агентами. В настоящее время ведется разработка подобных веществ. Также в настоящее время проводится поиск маркеров, метилирование которых специфично для опухолей определенного типа. Для некоторых опухолей уже показана возможность элементов обнаружения соскобов аберрантно слизистой метилированных ткани генов на микроколичествах ДНК, выделенных из слюны, сыворотки и форменных крови, высокочувствительными методами, основанными на ПЦР. В связи с этим выявление маркеров метилирования представляется перспективной и важной задачей.

- 38 Материалы и методы.

1. Список использованных реактивов. Буфер TBE, 5Х: 0.445 М трис-борат 0.445 М борная кислота 0.01 М ЭДТА рН 8.0 2 М трис-ацетат 0.1 М ЭДТА 1 М NaCl 100 мМ трис-HCl рН 8.0 10 мМ ЭДТА рН 8.0 100 мМ трис-HCl рН 8.0 10 мМ ЭДТА рН 8.0 65 мМ Na2B4O7 620 мМ борная кислота 4 мМ ЭДТА 0.16 М сульфат аммония 0.6 М трис-HCl pH 8.8 Tween-20 1% или Triton X-100 0.1% 250 мМ трис-HCl рН 8.3 375 мМ KCl 15 мМ MgCl2 AgNO3 1 г 37% формальдегид 1.5 мл Вода до 1 л Na2CO3 30 г 37% формальдегид 1.5 мл Na2S2O3 2 мг Вода до 1 л 150 мМ NaCl 10 мМ трис-HCl pH 8.0 0.2 мМ ЭДТА рН 8.0 0.16 мг/мл гликоген 50 мМ глюкоза 25 мМ трис-HCl рН 8.0 10 мМ ЭДТА рН 8.0 0.2 М NaOH 1% SDS Буфер ТАЕ, 50Х: Буфер STE, 10Х:

Буфер ТЕ, 10Х: Буфер ВЕ, 20Х:

Буфер для ПЦР, 10Х:

Буфер для обратной транскрипции, 5Х: Раствор для серебрения 1: Раствор для серебрения 2:

Буфер для элюции ДНК из ПААГ:

Раствор для выделения плазмид 1: Раствор для выделения плазмид 2 (лизирующий):

- 39 Раствор для выделения плазмид 3 (нейтрализующий): Среда SOC:

5 М ацетат калия 60 мл рН 4.8 ледяная уксусная кислота 11.5 мл Вода 28.5 мл 2% бакто-триптон 0.5% дрожжевой экстракт 10 мМ NaCl 2.5 мМ KCl 10 мМ MgCl2 10 мМ MgSO4 20 мМ глюкоза NaCl 10г Пептон 10 г Дрожжевой экстракт 5 г Вода до 1 л 100 мМ RbCl 50 мМ MnCl2 30 мМ ацетат калия 10 мМ CaCl2 15% глицерин 10 мМ MOPS 10 мМ RbCl 75 мМ CaCl2 15% глицерин 98% деионизованый формамид 0.025% бромфенол голубой 0.025% ксиленцианол 50% глицерин 1 мМ ЭДТА рН 8.0 0.025% бромфенол голубой -метакрилоксипропилтриметоксисилан ("Pharmacia Biotech", США) 0.001% уксусная кислота 0.01% этанол 5X SSPE 5X раствор Денхардта 5% SDS 50% формамид 3.6 М NaCl 0.2 M Na2HPO4·7H2O 0.02 M ЭДТА Среда LB:

Буфер RF1:

Буфер RF2:

Буфер для нанесения ДНК на ПААГ: Буфер для нанесения ДНК на агарозный гель: "Кислый" силан:

Буфер для гибридизации:

Буфер SSPE, 20Х:

- 40 Раствор Денхардта, 100Х: Буфер SSС, 20Х: Буфер LST:

2% бычий сывороточный альбумин 2% поливинилпирролидон 2% фикол 3 М NaCl 0.3 M цитрат натрия 29 мМ трис-HCl рН 8.0 10 мМ NaCl 3 мМ MgCl2 29 мМ трис-HCl рН 8.0 10 мМ NaCl 3 мМ MgCl2 5% сахароза 4% Np-40 10 мМ трис-HCl рН 8.0 10 мМ NaCl 10 мМ ЭДТА 29 мМ трис-HCl рН 8.0 10 мМ NaCl 1 мМ MgCl2 0.25 М сахароза Буфер TNLB, 4Х:

Буфер TNE:

Буфер LST – сахароза:

2. Клинические материалы. Образцы рака шейки матки и морфологически нормальных прилегающих тканей были получены в отделении радиохирургии РОНЦ им. Н.Н. Блохина РАМН в результате оперативных вмешательств и любезно предоставлены д.м.н. Нечушкиным М.И. Клинический диагноз был подтвержден патоморфологическим исследованием в отделении патоморфологии РОНЦ им. Н.Н. Блохина РАМН д.м.н. Смирновым А.В. Морфологически нормальные ткани, прилегающие к опухолевым тканям, не содержали опухолевых клеток по данным гистологических исследований. Сбор материала и создание банка биопсийного материала осуществляли ст.н.с. Л.А. Семенова в и н.с. Л.С. Павлова. ДНК Образцы и РНК хранили и транспортировали жидком азоте. выделена гуанидинизотиоционатным методом и любезно предоставлена сотрудниками лаборатории молекулярной биологии вирусов Т. Грицко, М. Атталеб и В.

- 41 Кобзевой. Всего было исследовано 30 образцов плоскоклеточного рака шейки матки, имеющих стадии опухолевой прогрессии Т1а-Т3 и классифицированных согласно критериям ВОЗ. Все исследуемые образцы опухолей шейки матки были позитивны по HPV-16 или HPV-18. Также в работе были использованы клеточные линии рака шейки матки HeLa и SiHa. 3. Выделение ДНК и РНК из клеточных культур. Замороженный материал переносили в раствор ГТЦ и гомогенизировали 4-5 ударами в гомогенизаторе Даунса. Гомогенат прогревали при 55°С в течение 5 мин, наслаивали на подушку 5.7 М CsCl и центрифугировали при 30 тыс. об/мин при 18°С в течение 18 ч с использованием ротора SW50 (Beckman). После центрифугирования фракцию, несущую клеточную ДНК и находящуюся на поверхности цезиевой "подушки", переносили в стеклянные пробирки, а оставшееся содержимое роторных пробирок сливали. Осадок РНК, находящийся на дне пробирок, растворяли в бидистиллированной воде и переосаждали ацетатом Nа рН 5.0 – этанолом (см. "Материалы и методы", п. 13). К фракции ДНК добавляли 4 объема буфера 1Х STE – 1% SDS. Затем добавляли равный объем смеси хлороформ – изоамиловый спирт (24:1) и экстрагировали ДНК 5 мин. После разделения фаз центрифугированием отбирали верхнюю фазу и процедуру повторяли. Затем ДНК осаждали 3 объемами этанола и центрифугировали при 20 тыс. об/мин при 4°С. Осадок ДНК промывали 75% этанолом на 1Х STE, высушивали и растворяли в бидистиллированной воде. 4. Выделение ДНК из лейкоцитов. Лейкоцитарную массу суспендировали в буфере LST. Добавляли равный объем 4Х TNLB, осторожно перемешивали и центрифугировали при 5 тыс. об/мин в течение 10 мин. Осадок дважды промывали буфером LST – сахароза. Затем к осадку добавляли буфер TNE – 1% SDS и протеиназу К в конечной концентрации 100 мкг/мл. Инкубировали в течение ночи при 50°С. Затем добавляли равный объем смеси хлороформ – изоамиловый спирт (24:1) - 42 и экстрагировали ДНК 5 мин. После разделения фаз центрифугированием отбирали верхнюю фазу и процедуру повторяли. Затем ДНК осаждали 3 объемами этанола и центрифугировали при 13 тыс. об/мин при 4°С. Осадок ДНК промывали 75% этанолом на 1Х STE, просушивали и растворяли в бидистиллированной воде. 5. Рестрикция геномной ДНК. Для рестрикции геномной ДНК мы использовали два типа эндонуклеаз рестрикции (далее рестриктазы – табл.1). На первом этапе определенное количество ДНК из нормальной и опухолевой тканей инкубировали с рестриктазой, не содержащей в составе своего сайта рестрикции CpG динуклеотиды. Затем отбирали половину или одну треть обработанной таким образом ДНК и добавляли к ней рестриктазу, чувствительную к статусу метилирования CpG динуклеотидов в составе своего сайта рестрикции. В дальнейшем аликвоту рестрицированной ДНК использовали в реакции амплификации. Все рестриктазы использовали с 5 кратным избытком (1 мкг ДНК – 5 ед. фермента) и инкубировали с ДНК в течение 14-16 ч. В случае метилчувствительных рестриктаз обработку проводили в два этапа, с добавлением на втором этапе половины первоначального количества фермента и инкубированием в течение 3-4 ч. Таблица 1. Эндонуклеазы рестрикции.

Рестриктаза RsaI MseI NarI SacII SmaI HpaII MspI HhaI Сайт gtac ttaa ggcgcc ccgcgg cccggg ccgg ccgg gcgc Чувствительность к 5mC – – + + + + – + CpGs – – 1 2 1 1 1 1 Tинк, oC 37 65 37 37 25-30 37 37 Производитель СибЭнзим* MBI Fermentas** СибЭнзим СибЭнзим СибЭнзим СибЭнзим СибЭнзим MBI Fermentas * - Россия. ** - Литва.

- 43 6. Бисульфитная модификация ДНК. Данный получающегося взаимодействовать метод при основан на способности бисульфита составе иона гидросульфита, в воде, ДНК с растворении натрия с цитозином в одноцепочечной превращением последнего в урацил. В тоже время 5-метилцитозин при тех же условиях модификации не подвергается. В дальнейшем производится амплификация исследуемой последовательности ДНК с помощью ПЦР. При этом все остатки урацила и тимина амплифицируются как тимин и только 5метилцитозин воспроизводится как цитозин (Olek et al. 1996). 200 нг геномной ДНК выдерживали 5 мин в кипящей водяной бане, после чего охлаждали во льду. Добавляли раствор NaOH до конечной концентрации 0,3 М и инкубировали при 50оС 15 мин. Затем вносили 2 объема 2% низкоплавкой агарозы (“Sigma”, США) и всю смесь переносили в пробирку с холодным минеральным маслом для формирования агарозной "бусины". После этого добавляли раствор Na2S2O3 и гидрохинона до конечной концентрации 3.1 М и 0.5 мМ соответственно и инкубировали при 50оС 16 ч. Дальше промывали раствором 1Х TAE 6 раз по 15 мин. Вслед за тем проводили десульфонацию раствором 0,2 М NaOH 2 раза по 15 мин и промывали первоначально раствором 1Х TAE 1 раз 15 мин, а потом бидистиллированой водой 3 раза по 15 мин. Дальше «бусину» разводили нагреванием бидистиллированой водой в 10 раз и аликвоту использовали для ПЦР. 7. Полимеразная цепная реакция. 7.1. Праймеры. При выборе праймеров, для повышения специфичности ПЦР, необходимо следовать некоторым требованиям. Так, длина праймера должна быть от 18 до 40 нуклеотидов в зависимости от назначения. Следует избегать появления вторичных структур в праймере и более трех-четырех одинаковых нуклеотидов подряд. Используемые в одной реакции праймеры не должны иметь комплементарных участков. Для оценки структуры праймеров мы - 44 использовали компьютерную программу Oligo 4.1 Primer Analysis Software. Состав праймеров, использованных в данной работе, приведен в таблице 2. Таблица 2. Праймеры.

Праймер СП-2 СП-3 СП-SRA1 СП-SRA2 СП-SRA3 Состав aac cct cac cct aac cgc gg aac cct cac cct aac ccg cg gca cct ggg ttg atg gcc gg gca ggg gtc agt cgc tcc gg tta ggg aat agt ggt cgg cc tотж, оC 55 55 60 60 Статистические GC-богатые праймеры Ген-специфические праймеры 3A-адаптин 26-1 26-3 26-5 26-6 26-7 26-8 26-9 26-10 26-11 26-12 26-13 26-14 GAPDH-f GAPDH-r Adp-bis-1 Adp-bis-2 Adp-bis-3 gcg gca atg tcc agc aat agt cct gag ccc agc cca agt c ctt cct gga gag gag cgg g aat cat ccc aac aat ccg ctt tgc cct ctg gac tgg aac ct cgc tgc taa aga ggc cga ag ctt cgg cct ctt tag cag cg agg ttc cag tcc aga ggg ca ggg tgg gct tcc tgg aga g ctt tgg aga aag ata ccc att g tgc aat cgg tat ctt tct cca a gac tgc cag gtc ggc tca gg GAPDH acc aca gtc cat gcc atc ac tcc acc acc ctg ttg ctg ta 60 60 50 52 50 60 60 60 60 60 60 60 60 60 60 60 Метилспецифические праймеры ggg tgg taa ttt agt agg ttt gta tat tg aca tta ccg cga tac taa cga ata c taa aaa cta cta aaa acc cct aca cac at Температура отжига определяет жесткость условий гибридизации праймеров с мишенью и, следовательно, специфичность амплификации;

она - 45 зависит от длины праймеров и их GC-содержания. Для приблизительной оценки температуры отжига мы использовали следующую формулу: 4оС (G + C) + 2oC (A + T) – 4. Точное значение температуры подбирали экспериментальным путем, используя температурный градиент. 7.2. Метилчувствительная ПЦР со статистическими GC-богатыми праймерами. Обработанную метилчувствительными рестриктазами геномную ДНК (50-100 нг) амплифицировали методом ПЦР с использованием как одного статистического GC-богатого праймера, так и в случае СП-2 и СП-3 их комбинации. Использованные в нашей работе статистические GC-богатые праймеры приведены в табл. 2. Реакцию проводили в конечном объеме 25 мкл в следующих условиях: 1X буфер для ПЦР, 1.5 мМ MgCl2, 200 мкМ каждого из четырех дезоксинуклеотид-трифосфатов, 25 пмоль праймера и 1 ед. акт. Taq ДНК-полимеразы ("НИИ Биоорганической химии", Россия). В случае радиоактивного мечения продуктов ПЦР в реакцию добавляли 2 мкКи -33P-dATP. Первые 5 циклов реакции проходили в «мягком» режиме: 94oC 30 сек, 40оC 60 сек, 72оC 90 сек. В течение следующих 30 циклов амплификацию проводили в специфическом режиме: 94оC 15 сек, соответствующая для данного праймера tотж (см. табл. 2) 15 сек, 72оC 60 сек (Gonzalgo et al., 1997). Продукты ПЦР анализировали в высокоразрешающем 5% полиакриламидном геле в денатурирующих условиях. ДНК выявляли методом серебрения, если не проводили мечения продукта ПЦР (см. п. 8.3.), или экспонированием геля с рентгеновской пленкой в течение 14 дней. Выделенную из полиакриламидного геля ДНК (см. п. 8.1.) амплифицировали с использованием соответствующего праймера. Реакцию проводили в специфических условиях описанных выше. ПЦР осуществляли в течение 30 циклов в следующем режиме: 94оC 30 сек, соответствующая для праймера tотж (см. табл. 2) 30 сек, 72оC 60-180 сек. Время элонгации определялось размером амплифицируемого фрагмента ДНК. В ряде случаев - 46 реакцию проводили в присутствии 10% глицерина или 5% ДМСО. Качественную и количественную оценку продукта ПЦР проводили методом электрофореза в агарозном геле, сравнивая с известным количеством ДНКмаркера PstI. Для клонирования использовали аликвоту продукта ПЦР без предварительной очистки. 7.3. Метилчувствительная ПЦР со специфическими праймерами. Обработанную метилчувствительными рестриктазами геномную ДНК (50-100 нг) амплифицировали с использованием ген-специфических праймеров (табл. 2). Реакцию проводили в конечном объеме 25 мкл в следующих условиях: 1Х буфер для ПЦР, 2 мМ MgCl2, 200 мкМ каждого из четырех дезоксинуклеотид-трифосфатов, 10 пмоль каждого праймера и 1 ед. акт. Taq ДНК-полимеразы ("НИИ Биоорганической химии", Россия). Амплификация проходила при следующем режиме: 94оC 15 сек, соответствующая для пары праймеров tотж (см. табл. 2) 30 сек, 72оC 40-60 сек, - 30-35 циклов. В случае праймеров к гену 3A-адаптина реакцию проводили в присутствии 5% формамида. Выявление продуктов ПЦР проводили методом электрофореза в агарозном геле. 7.4. Метилспецифическая ПЦР. Метилспецифическую ПЦР проводили в два этапа по принципу полугнездовой ПЦР. На первом этапе ДНК после бисульфитной модификации амплифицировали с использованием праймеров adpt-bis-1 и adpt-bis-3 в конечном объеме 50 мкл в следующих условиях: 1Х буфер для ПЦР, 2 мМ MgCl2, 200 мкМ каждого из четырех дезоксинуклеотидтрифосфатов, 10 пмоль каждого праймера и 1 ед. акт. Taq ДНК-полимеразы ("НИИ Биоорганической химии", Россия). Амплификация проходила в следующем режиме: 94оC 30 сек, 50оC 60 сек, 72оC 90 сек, - 35 циклов. На втором этапе использовали аликвоту амплификата из первой ПЦР, неразведенной или разведенной бидистилированной водой в соотношении 1:10. Также заменяли праймер adpt-bis-1 на праймер adp-bis-2. Реакцию проводили в конечном объеме 50 мкл в описанных выше условиях.

- 47 Амплификация проходила в следующем режиме: 94оC 30 сек, 52оC 30 сек, 72оC 60 сек, - 30 циклов. Продукты ПЦР анализировали с помощью электрофореза в агарозном размера, геле. При его наличие продукта из ПЦР соответствующего проводили выделение агарозы.

Количественную оценку очищенного продукта ПЦР осуществляли методом электрофореза в агарозном геле, сравнивая с известным количеством ДНКмаркера PstI. Определение нуклеотидной последовательности исследуемого продукта ПЦР проводилось на автоматическом сиквенаторе в институте Молекулярной биологии им. Энгельгардта, Россия. 8. Выделение продуктов ПЦР из гелей. 8.1. Выделение продуктов ПЦР из полиакриламидного геля. Отобранные для клонирования фрагменты ДНК вырезали из геля. К ним добавляли 25 мкл буфера для элюции ДНК из ПААГ и инкубировали 15 мин при 37оС. Затем смесь несколько раз замораживали и оттаивали. Инкубировали в течение ночи при 37оС, центрифугировали при 13 тыс. об/мин 5 мин, отбирали супернатант и переосаждали с использованием 3М ацетата натрия – 96% этанола (см. "Материалы и методы", п. 13). Осадок растворяли в бидистиллированой воде и диализовали с помощью специальной мембраны. 8.2. Выделение продуктов ПЦР из агарозного геля. Выделение продуктов ПЦР после электрофореза проводили из 1% легкоплавкой агарозы ("Sigma", США) с помощью системы Wizard® PCR Preps DNA Purification System ("Promega", США) по методике, предложенной фирмой. 9. Клонирование продуктов ПЦР. 9.1. Вектор. Для клонирования продуктов ПЦР мы использовали плазмиду pGEM®T Easy, входящую в состав системы pGEM®-T Easy Vector System (“Promega”, США). Так как некоторые термостабильные ДНК-полимеразы, в - 48 частности Taq ДНК-полимераза, часто добавляют на 3' конец амлификата одиночный дезоксиаденозин, то вектор pGEM®-T Easy содержит в сайте клонирования на обоих 3' концах исскуствено добавленный одиночный концевой тимидин. Эта модификация позволяет значительно увеличить эффективность лигирования продукта ПЦР и плазмиды, поскольку обеспечивает комплементарность концов продукта ПЦР и плазмиды и снижает вероятность самолигирования вектора. Отбор трансформированных клонов вели по их резистентности к ампицилину, обеспечиваемой вектором pGEM®-T Easy, и с помощью биохимического теста, именуемого белоголубой селекцией. Несущие рекомбинантные плазмиды бактерии образуют колонии белого цвета, а бактериальные клоны, содержащие только плазмиду, – голубого. Полилинкер фланкируют промоторы T7 и SP6 РНК полимераз, что позволяет проводить определение нуклеотидной последовательности вставки, используя соответствующие праймеры. Лигирование фрагмента ДНК, полученного в результате ПЦР, с вектором pGEM®-T Easy проводили по методике, предложенной фирмой. Трансформацию компетентных клеток проводили всем количеством полученной рекомбинантной плазмиды. 9.2. Получение компетентных клеток Escherichia coli. Для получения компетентных клеток мы использовали штамм XL1Blue Escherichia coli и стандартный метод с применением CaCl2 и RbCl (под ред. Гловера 1988). В 500 мл колбу вносили 50 мл среды SOС и 1 мл ночной культуры бактерий. Наращивали клетки при 37оС с интенсивным перемешиванием до плотности ~5·107 клетка/мл, что для данного штамма соответствует оптической плотности D550 = 0.5. После достижения бактериальными клетками необходимой концентрации переносили культуру в полипропиленовые пробирки и охлаждали в ледяной бане в течение 15 мин. Затем осаждали клетки центрифугированием при 3 тыс. об/мин в течение 15 мин при 4оС и тщательно удаляли супернатант. Далее ресуспендировали - 49 клетки в объеме буфера RF1, составляющем 1/3 от собранного объема, и инкубировали клетки в ледяной бане в течение 15 мин. Осаждали клетки как описано выше. Потом ресуспендировали клетки в буфере RF2 (1/12.5 исходного объема) и инкубировали в ледяной бане в течение 15 мин. После этого суспензию клеток разделяли на аликвоты по 100 мкл в охлажденные 1.5 мл микроцентрифужные пробирки и быстро замораживали в жидком азоте. Компетентные клетки хранили при температуре -70оС. 9.3. Трансформация клеток Escherichia coli. 100 мкл суспензии компетентных клеток размораживали в ледяной бане, вносили рекомбинантную ДНК, осторожно перемешивали и оставляли в ледяной бане в течение 30 мин. Затем клетки выдерживали в водяной бане при 42oС в течение 90 сек (фаза "теплового шока") и быстро охлаждали в ледяной бане в течение 10 мин. Затем к суспензии клеток добавляли 400 мкл среды SOC и инкубировали при 37оС в течение одного часа для развития устойчивости к селективному антибиотику. Затем клетки высаживали на чашки Петри с 3.5% триптоз-агаром ("Ferak", Германия), содержащим антибиотик ампицилин в концентрации 75 мкг/мл, IPTG (0.8 мг на поверхность 60 мм чашки) и X-gal (0.8 мг на поверхность 60 мм чашки). После этого клетки инкубировали в течение ночи при 37оС. Бактериальные клоны, несущие рекомбинантные плазмиды, отбирали методом бело-голубой селекции. Отобранные клоны высевали в 4 мл среды LB, содержащей ампицилин в концентрации 50 мкг/мл, инкубировали при 37оС в течение ночи и выделяли из бактериальных клеток рекомбинантные плазмиды. 9.4. Выделение плазмидной ДНК. Аналитические способами: Первый способ представляет собой метод щелочного лизиса ночной культуры бактерий (Маниатис с соавт., 1988). После осаждения бактерий из 4 мл среды LB центрифугированием в течение 1 мин осадок ресуспендировали встряхиванием в 300 мкл охлажденного во льду раствора 1 для выделения количества плазмидной ДНК выделяли двумя - 50 плазмид и инкубировали в течение 5 мин при комнатной температуре. Затем добавляли 600 мкл свежеприготовленного раствора 2 (лизирующего) и осторожно перемешивали содержимое, переворачивая пробирку 4-5 раз без встряхивания. Выдерживали в ледяной бане в течение 5 мин. Далее добавляли 450 мкл охлажденного во льду раствора 3 (нейтрализующего) и осторожно перемешивали содержимое, переворачивая пробирку 4-5 раз без встряхивания. Инкубировали в ледяной бане в течение 5 мин. После этого центрифугировали при 13 тыс. об/мин в течение 5 мин при 4оС. Переносили надосадочную жидкость и добавляли к ней равный объем смеси фенолхлороформ. Перемешивали в течение 2 мин интенсивным встряхиванием и центрифугировали в течение 2 мин. Затем к супернатанту добавляли равный объем хлороформа и повторяли процедуру. Далее осаждали ДНК двумя объемами этанола, выдержав в течение 5 мин при комнатной температуре, и центрифугировали при 13 тыс. об/мин в течение 10 мин при 4оС. Осадок промывали 75% этанолом на 1X STE, высушивали в вакуумном эксикаторе, растворяли в 50 мкл буфера ТЕ и обрабатывали РНКазой 20 мкг/мл. Второй способ представляет собой использование системы для выделения плазмид Wizard® Plus SV Minipreps DNA Purification System ("Promega", США). Выделение проводили по протоколу, предложенному фирмой. Количественную вектора проводился на оценку плазмидной ДНК осуществляли в институте спектрофотометрически. Сиквенс клонированного продукта ПЦР в составе автоматическом сиквенаторе Молекулярной биологии им. Энгельгардта, Россия. 10. Гель-электрофорез. 10.1. Электрофоретическое разделение ДНК в агарозном геле. Разделение ДНК проводили в горизонтальном агарозном геле в 1X ТАЕ в присутствии бромистого этидия. Геномную ДНК после обработки метилчувствительными рестриктазами и плазмидную ДНК фракционировали в 0.8% агарозе;

фрагменты ДНК, полученные в результате ПЦР, в зависимости - 51 от размера разделяли в 1-3% геле. Соответствующее количество агарозы ("Sigma", США;

"Serva", США) и буфера ТАЕ нагревали в дистиллированной воде до полного расплавления агарозы. После этого раствор агарозы охлаждали до 50оС и добавляли бромистый этидий до конечной концентрации 0.5 мкг/мл, перемешивали и заливали в кювету для геля. Образцы исследуемой и маркерной ДНК наносили в гель, предварительно смешав с буфером для нанесения (9:1, о/о). В качестве ДНК-маркера применяли Hind III, PstI и 100bp (табл. 3). Электрофорез геномной ДНК проводили при напряженности электрического поля Таблица 3. ДНК-маркеры молекулярного веса.

Маркер Источник ДНК Рестриктаза Фрагменты, тыс. п.о. 0.15 0.2 0.211 0.216 0.243 0.264 0.339 0.448 0.468 0.514 0.805 1.093 1.159 1.780 1.986 2.14 2.459 2.556 2.898 4.507 4.749 5.077 11.499 0.5 2.0 2.3 4.4 6.6 9.4 23.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. PstI фаг PstI HindIII 100 bp фаг исскуственный HindIII — 3-4 В/см в течение ночи. В дальнейшем фракционированную геномную ДНК переносили на нейлоновую мембрану и использовали в блот-гибридизации. Электрофорез плазмидной ДНК и продуктов ПЦР проводили при напряженности электрического поля 10-15 В/см в течение 30-45 мин. ДНК в геле регистрировали по флуоресценции в проходящем ультрафиолете с длиной волн от 240 нм до 360 нм. Результаты протоколировали с помощью фотографирования геля или системы Gel Imagertm. 10.2. Электрофоретическое разделение РНК в агарозном геле. Разделение РНК проводили в горизонтальном 0.8% агарозном геле в 2X BE в присутствии формальдегида и бромистого этидия. Для получения геля соответствующее количество агарозы ("Sigma", США) и буфера ВЕ нагревали в небольшом количестве дистиллированной воды до полного расплавления агарозы. Затем добавляли 1/6 конечного объема 37% раствора - 52 формальдегида, бромистый этидий до конечной концентрации 0.2 мкг/мл и дистиллированную воду, перемешивали и заливали в кювету для геля. Перед нанесением образцы исследуемой РНК переосаждали с использованием 3М ацетата натрия – 96% этанола (см. п. 13) и растворяли в 20 мкл смеси, содержащей 50% формамид, 2X BE буфер, 7% формальдегид и бидистиллированную воду. Затем пробы инкубировали при 55оС в течение 15 мин, охлаждали в ледяной бане в течение 5 мин и наносили в гель, предварительно смешав с буфером для нанесения (9:1, о/о). Электрофорез проводили при напряженности электрического поля 3-4 В/см в течение 3-4 ч. Результаты протоколировали с помощью фотографирования геля. В дальнейшем фракционированную РНК переносили на нитроцеллюлозную мембрану и использовали в блот-гибридизации. 10.3. Электрофорез ПЦР-амплифицированной ДНК в денатурирующем полиакриламидном геле. Для проведения электрофореза в ПААГе мы использовали электрофоретический прибор Sequi-Gen ("Bio-Rad", США). В качестве электрофоретического буфера использовали 1Х ТВЕ. Для связывания геля со стеклом, одно из стекол обрабатывали "кислым" силаном (acid activated silane). Другое стекло силиконизировали диметилхлорсиланом (repel silane). Для получения геля готовили 75 мл смеси, следующего состава: 9.375 мл 40% раствора акриламид-бисакриламид (соотношение акриламид-бисакриламид 19:1), 15 мл 5Х ТВЕ, 31.5 г мочевины и дистиллированная вода до необходимого объема. Затем добавляли 300 мкл ПСА и 60 мкл TEMED, тщательно перемешивали и заливали в прибор для полимеризации. Перед нанесением проб на гель проводили префорез при напряженности электрического поля 45 В/см в течение 1 ч. Пробы для электрофореза в ПААГ готовили следующим образом: 2 мкл исследуемого продукта ПЦР смешивали с 6 мкл буфера для нанесения в ПААГ. Далее пробы прогревали при 100оС в течение 5 мин, охлаждали в ледяной бане, брали аликвоту 4 мкл и наносили на гель. Электрофорез - 53 проводили в течение 4-6 ч при 50оС и напряженности электрического поля 40-50 В/см (в зависимости от температуры геля). По окончании электрофореза гель оставался на стекле, обработанным "кислым" силаном и его фиксировали в 10% уксусной кислоте в течение 20 мин. После фиксации гель отмывали 3 раза дистиллированной водой по 2 мин каждый раз. Затем проводили окраску раствором 1 для серебрения в течение 30 мин, промывали 20 сек дистиллированной водой и проявляли раствором 2 для серебрения в течение 1-5 мин (до появления окраски ДНК). Затем реакцию останавливали фиксацией в 10% уксусной кислоте в течение 5 мин и промывали водой. Результаты протоколировали с помощью сканера Mustek 1200SP. 11. Блот-гибридизация. 11.1. Перенос ДНК на нейлоновую мембрану. После окончания электрофореза в случае геномной ДНК агарозный гель выдерживали в денатурирующем растворе 1.5 М NaCl – 0.5 M NaOH в течение 30 мин с периодическим покачиванием. Затем нейтрализовали в растворе 0.5 М Tris-HCl pH 8.0 – 1.5 M NaCl в течение 1 часа с постоянным покачиванием. В случае продуктов ПЦР предварительной обработки геля не проводили. После этого на ДНК-содержащую область геля накладывали нейлоновый фильтр Hybond N+ ("Amersham", UK), смоченный в 20X SSC. Сверху помещали 5-6 см слой фильтровальной бумаги и груз до 200 г. Перенос осуществляли в присутствии 20X SSC в течение ночи. ДНК фиксировали на нейлоновой мембране при 80оС в течение часа. 11.2. Перенос РНК на нитроцеллюлозную мембрану. После окончания электрофореза на РНК-содержащую область геля накладывали нитроцеллюлозный фильтр Hybond C-extra ("Amersham", UK), смоченный в 20X SCC. Сверху помещали 5-6 см слой фильтровальной бумаги и груз до 200 г. Перенос осуществляли в присутствии 20X SSC в течение ночи. РНК фиксировали на нитроцеллюлозной мембране при 80оС в течение часа под вакуумом.

- 54 11.3. Получение меченого зонда. Детекцию исследуемых последовательностей проводили с помощью гибридизации с радиоактивно-меченным зондом. Для получения меченого зонда реакционная смесь (12 мкл) содержала 12 нг ДНК, 10 пмоль гексапраймера, 1.2 мкл 10X буфера, 0.5 М смесь нуклеотидов dTTP, dCTP и dGTP, 12.5 мкКи -32P-dATP (Обнинск, Россия), и 3 ед. акт. ДНК-полимеразы Кленова ("Fermentas", Литва). Смесь ДНК – гексапраймер предварительно выдерживали в кипящей водяной бане в течение 5 мин, затем быстро охлаждали на льду и добавляли остальные компоненты реакционной смеси. Реакцию синтеза проводили в течение 1 час при 37оС. Очистку радиоактивно-меченного зонда от свободного -32P-dATP проводили на мини-колонке с Sephadex G50 fine, уравновешенной 1X буфером STE с использованием в качестве маркера молекулярного веса Dextran blue. Активность зонда определяли с помощью жидкостного сцинтилляционного счетчика. Для гибридизации использовали зонд с удельной активностью 108 имп/(минмкг). 11.4. Гибридизация ДНК (РНК), иммобилизованной на мембране. Предгибридизацию мембраны с перенесенной ДНК (РНК) проводили с использованием гибридизационного буфера при 42 оС в течение 1 час. Гибридизацию проводили в свежем гибридизационном буфере, содержащим радиоактивномеченный зонд из расчета 2 млн. имп. на 1 мл, в течение ночи при 42 оС. Далее мембрану отмывали от непрореагировавшего зонда с помощью стандартного раствора (2X SSC, 0.1% SDS) 1 раз 10 мин при комнатной температуре и 3 раза по 20 мин при 60оС. При необходимости отмывку проводили раствором 1X SSC – 0.5% SDS, а затем раствором 0.1X SSC – 5% SDS. Степень отмывки тестировали с помощью счетчика -частиц "Эксперт", затем фильтр экспонировали с рентгеновской пленкой в кассете с усиливающими экранами при -70 дней в случае РНК и геномной ДНК.

о С. Продолжительность экспозиции составляла от нескольких часов до суток для продуктов ПЦР и от 10 до - 55 12. Обратная транскрипция. Для обратной транскрипции использовали 1 мкг тотальной клеточной РНК. Реакцию проводили в конечном объеме 20 мкл в следующих условиях: 1Х буфер для обратной транскрипции, 0.01 М дитиотрейтол, 0.5 мМ каждого из четырех дезоксинуклеотид-трифосфатов, 10 пмоль гексапраймера и 200 ед. акт. обратной транскриптазы Superscripttm II RnaseH– ("GibcoBRL", США). Первоначально смесь РНК и гексапраймера в соответствующем объеме прогревали при 70оС в течение 10 мин. Затем охлаждали в ледяной бане и добавляли оставшиеся компоненты. Реакционную смесь выдерживали при 25оС в течение 10 мин для удлинения праймера и проводили основную реакцию обратной транскрипции при 42оС в течение 1 ч. Реакционную смесь прогревали при 70оС в течение 15 мин для инактивации фермента и разводили бидистилированной водой до конечного объема 100 мкл. Полученную кДНК в количествах подобранных экспериментальным путем использовали в полуколичественной ПЦР со специфическими праймерами. Условия проведения ПЦР описаны в п. 5.3. 13. Переосаждение ДНК (РНК). Для переосаждения к раствору ДНК (РНК) добавляли 0.1 объема 3 М ацетата натрия рН 5.0 и 3 объема 96% этанола, тщательно перемешивали и выдерживали при –20оС в течение 20 мин. Затем центрифугировали при 13 тыс. об/мин в течение 5-15 мин при 4оС. Осадок ДНК (РНК) промывали 75% этанолом на 1Х STE, высушивали под вакуумом и использовали в дальнейшей работе. 14. Анализ нуклеотидных последовательностей. 14.1. Поиск гомологий в банках данных. Поиск нуклеотидных последовательностей, гомологичных выявленным фрагментам ДНК, проводили с помощью BLAST® (Basic Local Alignment Search Tool) – набора компьютерных программ поиска гомологий, разработанных для быстрого анализа всех доступных баз данных последовательностей, каковыми являются Genbank, EMBL, DDBJ и PDB.

- 56 Данный сервис доступен по веб-адресу http://www.ncbi.nlm.nih.gov/BLAST/. При использовании программ оставляли предложенные их разработчиками параметры поиска. 14.2. Критерии CpG-островков. При анализе CpG-островка используют три основных критерия: распределение CpG динуклеотида по нуклеотидной последовательности, GC состав и длина последовательности. Для оценки распределения CpG динуклеотида вычисляется показатель Н/Т по следующей формуле:

H n N = T NC NG где H – наблюдаемое число CpG динуклеотидов;

T – теоретическое число CpG динуклеотидов;

n – число CpG в последовательности;

N – общее число нуклеотидов в последовательности;

NC – число остатков цитозина;

NG - число остатков гуанина. Для CpG островков этот показатель 0.6. Характерной особенностью CpG островков является так же повышенный GC состав, который определяется как доля цитозиновых и гуаниновых нуклеотидов в составе последовательности. Для CpG островков данный показатель превышает 0.5. Длина CpG-островка колеблется от 200 н.п. до нескольких тысяч, составляя в среднем 1 т.н.п. При анализе нуклеотидной последовательности на наличие CpGостровка использовалась компьютерная программа предсказания CpGостровков – WWWCPG program (http://l25.itba.mi.cnr.it/cgi-bin/wwwcpg.pl). В данной программе использовались следующие критерии CpG-островков: длина более 200 п.н., GC состав > 0.5, показатель Н/Т > 0.6 (Gardiner-Garden and Frommer 1987). Наличие повторов в последовательности ДНК определяли с помощью компьютерной программы обнаружения повторов REPEAT (http://l25.itba.mi.cnr.it/cgi-bin/wwwrepeat.pl).

- 57 Результаты исследования 1. Поиск CpG-островков, гиперметилированных в опухолях шейки матки 1.1. Принцип метода метилчувствительной ПЦР со статистическими GCбогатыми праймерами. Задачей нашего исследования было обнаружение CpG-островков, метилированных в опухолях шейки матки. Для ее решения мы использовали метод метилчувствительной ПЦР со статистическими GC-богатыми праймерами (СП-ПЦР) (Gonsalgo et al. 1997). Принцип метода заключается в следующем. ДНК из двух сравниваемых образцов (в нашем случае из опухолевой ткани и лейкоцитов или прилегающей к опухоли морфологически нормальной ткани, взятых от одного и того же пациента) обрабатывали мелкощепящей рестрикционной эндонуклеазой (рис. 5А), в А. НОРМА ДНК Обработка RsaI ОПУХОЛЬ Обработка МЧР ПЦР RsaI RsaI + МЧР ПААГ-электрофорез Б.

5’- AACCCTCACCCTAACCCGCG-3’ 3’-GCGCCCAATCCCACTCCCAA-5’ RsaI + МЧР RsaI Рисунок 5. Схематическое изображение метода метил-чувствительной ПЦР со статистическими GC-богатыми праймерами. Кружком обозначен сайт МЧР: метилирован, - сайт метилирован. А. Схема эксперимента;

- сайт не – статистический GC богатый праймер. Б. Присоединение статистического праймера к CpG-богатому району ДНК. Вертикальными черточками обозначены CpG динуклеотиды. Стрелки указывают направление синтеза ДНК.

- 58 сайте узнавания которой нет CpG динуклеотидов. Мы в своей работе использовали ферменты RsaI и MseI. Их применение позволяет получить CpG-островки в составе сравнительно небольших фрагментов геномной ДНК. Это повышает вероятность последующей амплификации CpGостровков, островков так как небольшие после GC-богатые фрагменты ДНК амплифицируются лучше, чем крупные. В тоже время большинство CpGостаются обработки такими рестриктазами неповрежденными. Затем обработанную ДНК снова подвергали рестрикции, но уже с использованием так называемых метилчувствительных рестриктаз (МЧР), отличительной чертой которых является два свойства. Во-первых, такие ферменты имеют в составе своих сайтов рестрикции один и более CpG динуклеотидов, поэтому CpG-островки содержат повышенное количество сайтов этих рестриктаз по сравнению с остальной ДНК. Во-вторых, МЧР работают в зависимости от статуса метилирования определенного CpG динуклеотида в сайте рестрикции. Так, они не способны рестрицировать свой сайт, если цитозин в составе этого CpG динуклеотида метилирован. Именно это свойство МЧР позволяет проводить дифференциальный анализ статуса метилирования CpG-островка. Таким образом, использование МЧР с одной стороны повышает вероятность обнаружения именно CpG-островка, а с другой определить его статус метилирования. Далее все варианты обработанных рестриктазами ДНК из опухолевой и нормальной ткани амплифицировали с использованием статистических GCбогатых праймеров. Эти праймеры представляют собой олигонуклеотиды, подобранные к среднестатистической последовательности ДНК, за исключением 3' конца, который состоит из 5-6 остатков цитозина и гуанина в различной комбинации (обычно расположенных случайным образом, но могут представлять собой и последовательность сайта какой-нибудь МЧР, например SacII в праймере СП-2). Наличие такого 3' конца приводит к тому, что в неспецифических условиях (при достаточно низких температурах отжига) происходит предпочтительная гибридизация праймера с GC богатыми областями ДНК (рис. 5Б). Так достигают обогащения продуктов ПЦР фракцией GC-богатых последовательностей, включающей также и CpGостровки. После амплификации ПЦР продукты разделяли в полиакриламидном геле в денатурирующих условиях. Для детекции продуктов мы использовали два метода. Первый является стандартным и подразумевает применение меченого нуклеотида при проведении ПЦР. Мы использовали -33P-dATP. В дальнейшем, после разделения, продукты выявляли, экспонируя гель с рентгеновской пленкой. Альтернативным методом идентификации является серебрение фрагментов ДНК непосредственно в полиакриламидном геле (реакция серебряного зеркала). Несмотря на более низкую чувствительность по сравнению с первым методом, он позволяет эффективно выявлять относительно длинные продукты реакции (300-1000 п.н.). На рисунке А. Л M HM 443 О H 444 Л MH Б. О Л 443 О Л MHMH 439 О MH 438 Л О MH MH MH MH Рисунок 6. Сравнение двух методов визуализации продуктов ПЦР в ПААГе. А. Радиоавтограф ПААГ с радиоактивномеченными продуктами ПЦР. Б. Серебрение фрагментов ДНК непосредственно в ПААГе. Стрелкой указан фрагмент, взятый в дальнейшее исследование. Числа вверху рисунка обозначают номера образцов, где Л – ДНК из лейкоцитов, О – ДНК из опухоли шейки матки. Рестрикция образцов ДНК MseI (M);

MseI/HpaII/HhaI (H).

представлены результаты типичного опыта по сравнению двух способов визуализации продуктов ПЦР в полиакриламидном геле. Стрелкой указан один и тот же фрагмент, выявленный как серебрением, так и при помощи радиоактивной метки. Таким образом, метод серебрения позволял нам - 60 надежно идентифицировать фрагменты ДНК в диапазоне от 300 до 1000 н.п., что, согласно общепринятым критериям (Gardiner-Gardner and Frommer 1987), соответствует размерам CpG-островков. В случае продуктов короче 300 п.н. радиоизотопный метод более чувствителен, чем серебрение. Основными преимуществами метода СП-ПЦР являются простота выполнения и относительная дешевизна. К главным недостаткам метода следует отнести тот факт, что он обнаруживает GC-богатые последовательности, не все из которых представляют собой CpG-островки. Причиной этому служат праймеры, которые не могут дифференцировать CpG-островки и амплифицируют все GC-богатые последовательности. Поэтому нами были внесены модификации, повышающие вероятность обнаружения CpG-островков. Известно, что скопление сайтов редкощепящих МЧР указывает на присутствие CpG-островка (Bird 1986). В связи с этим использование одновременно нескольких крупнощепящих ферментов метилчувствительной рестрикции повышает вероятность идентификации CpG-островка. Поэтому, наряду с обычно применяемыми мелкощепящими метилчувствительными эндонуклеазами (HpaII, HhaI) мы использовали крупнощепящие ферменты (SmaI, SacII, NarI). При этом недостатком использования МЧР является возможность неполного расщепления сайта рестрикции. Хотя для решения этой проблемы мы применяли двухэтапную обработку ДНК МЧР (см. раздел "Материалы и методы", п. 5), подтверждение статуса метилирования выявленных фрагментов требует дополнительных исследований. Обычно при сравнительном анализе ДНК из опухолевых и нормальных клеток методом МЧ-ПЦР со статистическими GC-богатыми праймерами в геле присутствуют три типа продуктов ПЦР (рис. 7). Первый тип продуктов присутствует в ДНК, как нормальных тканей, так и опухолей независимо от того, обработана ли ДНК метилчувствительными ферментами или нет. В этом случае возможны два варианта. Либо амплифицируемые фрагменты ДНК не содержат сайтов - 61 метилчувствительных рестриктаз, или же эти сайты присутствуют, но метилированы во всех исследуемых ДНК. Такие продукты ПЦР встречаются наиболее часто. Второй тип продуктов присутствует в ДНК, необработанных метилчувствительными рестриктазами, и отсутствует в ДНК, обработанных ими, независимо от того из опухолей или нормальной ткани они выделены. Такое состояние объясняется тем, что в амплифицируемых последовательностях есть неметилированные сайты узнавания, которые расщепляются рестриктазами, и, следовательно, предотвращается появление продуктов ПЦР. Эти последовательности наиболее вероятные кандидаты на роль CpG-островков. Они встречаются гораздо реже продуктов первого типа. И, наконец, существует третий тип продуктов, отсутствующий в ДНК из нормальных клеток и присутствующий в ДНК из некоторых опухолей. Причем данное различие существует только для ДНК, обработанных метилчувствительными рестриктазами. В этом случае сайты узнавания в амплифицируемых последовательностях есть, но они метилированы в некоторых опухолях в отличие от нормальных тканей. Такие продукты ПЦР встречаются еще реже, но поскольку они имеют исключительное метилирование только в опухоли, эти фрагменты, в сущности, и являются предметом поиска и дальнейших исследований.

I. II. III.

НиО RsaI ДНК-матрица продукт ПЦР НиО RsaI +МЧР НиО НиО RsaI RsaI +МЧР НиО RsaI Н RsaI +МЧР О RsaI +МЧР Рисунок 7. Схема типов продуктов ПЦР со статистическими GC-богатыми праймерами, встречающиеся в ПААГе. МЧР – метилчувствительная рестриктаза;

Н – прилегающая нормальная ткань, О – опухоль. Кружком обозначен сайт МЧР: метилирован, - сайт метилирован. - сайт не Типичный результат сравнительного анализа ДНК из опухолевых и нормальных клеток методом МЧ-ПЦР со статистическими GC-богатыми праймерами представлен на рисунке 8. Здесь видно, что большинство четко - 62 идентифицируемых фрагментов располагается в районе от 300 до 800 п.н. и являются продуктами первого и второго типа (отмечены стрелками). Также можно заметить, что продукты первого типа встречаются чаще, чем второго. Примеры продуктов третьего типа представлены на рисунке 9.

234 Н R N R 235 О Н NR N R 243 О N 250 О Н N R 275 О Н NR N 289 О Н N R N Н R N R О RN NR R Рисунок 8. Анализ продуктов амплификации ДНК из опухолевых и нормальных клеток с помощью СП-ПЦР со статистическими GC-богатыми праймерами СП-2 и СП-3. Фотография геля с продуктами ПЦР, окрашенных серебрением. Числами вверху рисунка обозначены номера образцов, где Н – ДНК из нормального эпителия;

О – ДНК из опухоли шейки матки. Рестрикция образцов ДНК RsaI (R);

RsaI/NarI (N). Стрелками указаны: продукт ПЦР первого типа;

размеры маркерных фрагментов. – – продукт ПЦР второго типа. Числами справа указаны - 63 Таким образом, при отборе фрагментов ДНК, как вероятных CpGостровков, мы руководствовались следующими критериями. Во-первых, в составе фрагмента должны присутствовать сайты, по меньшей мере, одной метилчувствительной рестриктазы, что определяется по отсутствию продукта в рестрицированной ДНК из нормальной ткани. И, во-вторых, он должен быть метилированным в двух и более опухолях.

А. Н 243 О RN S RNS Б. Л M 443 О HM H 439 Л О H MHM В. Н 234 О Н N Sc S N Sc S 235 О N Sc S N Sc S Рисунок 9. Анализ фрагментов ДНК, метилированных в опухолях шейки матки. Результаты ПААГ-электрофореза продуктов амплификации образцов ДНК из опухолевых, прилегающих к ним нормальных тканей или лейкоцитов с использованием статистических GC-богатых праймеров. А – фрагмент 26;

Б – фрагмент 36;

В – фрагмент 22. Вертикальными стрелками указаны продукты ПЦР третьего типа. Числа вверху рисунка обозначают номера образцов, где Н – ДНК из нормальной ткани, Л – ДНК из лейкоцитов, О – ДНК из опухоли шейки матки. Рестрикция образцов ДНК RsaI (R);

RsaI/NarI (N);

RsaI/SacII (Sc);

RsaI/SmaI (S);

MseI (M);

MseI/HpaII (H). Числами справа указаны размеры маркерных фрагментов.

1.2. Анализ фрагментов, выявленных с помощью метилчувствительной ПЦР со статистическими GC-богатыми праймерами. В результате анализа продуктов ПЦР нами были отобраны семь фрагментов ДНК, которые соответствовали вышеприведенным требованиям. Каждый фрагмент был выделен из геля, повторно амплифицирован в "строгих" условиях с праймерами, с которыми он был выявлен, и клонирован с помощь системы для прямого клонирования продуктов ПЦР. Отобранные клоны тестировали на наличие вставки либо амплификацией плазмиды с праймерами, с которыми был получен фрагмент, либо рестрикцией плазмид - 64 ферментами, содержащимися в полилинкере. Вслед за этим проводили сиквенс клонов. После секвинирования был проведен анализ полученных последовательностей. Во-первых, исследуемые фрагменты локализовывали в геноме человека. При отрицательном результате поиск проводили в геномах других позвоночных. Для решения этой задачи мы использовали набор программ поиска гомологий BLAST® (см. раздел "Материалы и методы", п. 14.1). Во-вторых, необходимо было установить, является ли обнаруженная нами последовательность CpG-островком. Для этого мы использовали общепринятые критерии CpG-островков (см. раздел "Материалы и методы", п. 14.2). Результаты анализа выявленных фрагментов представлены на рисунке 10 и в таблице 4. Фрагмент 18 локализован во втором интроне гена LOC148870, расположенного на первой хромосоме в зоне 1p36.32 (Homo sapiens chromosome 1 reference genomic contig NT_004321, www.ncbi.nlm.nih.gov/ entrez/viewer.fcgi?val=NT_004321.12). Данный ген получен автоматическим компьютерным анализом с использованием метода предсказания BLAST. Подтверждением наличия гена служит существование Ген имеет гомологии продукт с – последовательностью одного клона EST.

гипотетический белок FLJ32825, функция которого неизвестна. По GC составу и показателю Н/Т этот фрагмент принадлежит к GC-богатым последовательностям и не является CpG-островком. Фрагмент 30 расположен в локусе AL137850 девятой хромосомы в зоне 9q31.3-33.3 (Homo sapiens chromosome 9 reference genomic contig NT_017568, Данный www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NT_017568.10). также представляет собой просто GC-богатую фрагмент последовательность. Фрагмент 22. В базах данных не обнаружено последовательности гомологичной этому фрагменту. При этом анализ указывает на его - 65 неизвестная последовательность экзон HERVK14CI 3А-адаптин хромосома фрагмент 22 MER21B фрагмент 26 AluSx хромосома 13 фрагмент 32 экзон 7 LOC254722 хромосома Х 100 н.п.

фрагмент 3.3-kb тандемный повтор фрагмент обозначает CpG динуклеотид;

– область экзона;

– область повтора;

– обнаруженный фрагмент;

хромосомы 4 и Рисунок 10. Схематическое изображение обнаруженных CpG островков и прилегающих к ним районов. Вертикальная черта – область CpG островка.

- 66 Таблица 4. Фрагменты ДНК, идентифицированные методом СП-ПЦР.

Фрагмент* 18 30 22 32 34 36 26 Праймер СП-SRA2 26-4 СП-SRA3 СП-3 СП-3 СП-3 СП-2 Размер фрагмента ДНК (н.п.) 267 303 563 537 468 633 275 Размер CpGостровка (н.п.) ––– ––– 563 402 513*** 3303*** 868*** H/T CpG** 0.16 0.25 0.98 0.67 0.69 0.74 0.74 Содержание GC** 0.53 0.58 0.67 0.65 0.56 0.72 0.60 Количество CpG сайтов** 3 8 63 29 26 323 56 Гомология хромосома 1, ген LOC148870 хромосома 9 неизвестно хромосома 13 хромосома Х, ген LOC254722 хромосомы 4 и 10, 3.3-kb повтор, ген DUX4 хромосома 5, ген 3А-адаптин * Идентификационный номер в GenBank: 22 – AF218212, 26 – AF247736 ** В случае фрагментов 26, 32, 34 и 36 данный показатель приведен для всего CpG островка *** Полный размер CpG островка указан на основании гомологии в случае фрагмента 34 с геном LOC254722, в случае фрагмента 36 с 3.3kb повтором, в случае фрагмента 26 после определения нуклеотидной последовательности 5' регуляторного района гена 3А-адаптина - 67 принадлежность к CpG-островку. Обращает на себя внимание, что из всех выявленных нами CpG-островков фрагмент 22 обладает наиболее высокой плотностью CpG динуклеотидов (63 на 563 п.н.). Фрагмент 32 расположен в локусе AL137058 на тринадцатой хромосоме в зоне 13q32.2-33.3 (Homo sapiens chromosome 13 reference genomic contig NT_024524, www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val= NT_024524.10). Данная последовательность окружена с двух сторон повторами MER21B – 5’ и AluSx – 3’, а сам фрагмент гомологичен CpGостровку, который в свою очередь был выявлен с помощью компьютерного анализа (Sanger Centre Chromosome 13 Mapping Group, http://www.sanger.ac.uk/HGP/Chr13), однако ген, ассоциированный с этим CpG-островком, не определен. Фрагмент 34 был выявлен при клонировании фрагмента 32, повидимому, в качестве незначительной примеси, неотделившейся даже в денатурирующих условиях при электрофорезе в ПААГе, предположительно за счет высокого содержания GC пар в обоих фрагментах. Местоположение фрагмента 34 в геноме – 3’ область гена LOC254722, расположенного на хромосоме Х (Homo sapiens chromosome X reference genomic contig NT_011786, полученного www.ncbi.nlm.nih.gov/entrez/ компьютерным анализом viewer.fcgi?val=NT_011786.10), с использованием метода предсказания GenomeScan. Существование данного гена подтверждается гомологией с одним клоном EST. Фрагмент 34 содержит в своем составе часть последовательности CpG-островка, который включает в себя конец последнего интрона, последний экзон гена и нетранскрибируемую межгенную последовательность. Фрагмент 36. При анализе нуклеотидной последовательности этого фрагмента было установлено, что он гомологичен близкородственным друг другу областям с тандемными 3.3-kb повторами, располагающимся в прителомерных областях хромосомы 10 (зона 10q26.3) и хромосомы 4 (зона 4q35, полиморфный район D4Z4). Так в локусе D4Z4 обнаруживают от 10 до - 68 100 тандемных 3.3-kb повторов. Каждая копия повтора содержит ген DUX4, относящийся к семейству генов DUX, кодирующих транскрипционные факторы с двумя гомеодоменами (Gabriels et al. 1999). Для локуса 10q26.3 хромосомы 10 на данный момент выявлен набор гипотетических генов, имеющих предсказанную компьютерным анализом пептидную структуру, подобную гомеобоксным белкам. По своим параметрам обладает свойствами CpG-островка и с (Access. к No 3.3-kb повтор HUMFSHD 3.3-kb Кроме http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&lis t_uids=00871846&dopt=GenBank) повторов, ассоциированному принадлежит областями семейству гетерохроматина.

прителомерных областей хромосом 4 и 10 члены этого семейства располагаются на коротком плече всех акроцентричных хромосом и в перицентромерной области хромосомы 1 (см. van Geel et al. 2002). Фрагмент 26. При поиске гомологий с известными последовательностями выяснилось, что первые 127 н.п. (фрагмент А, рис. 11) имеют гомологию с 5’ концом кДНК гена 3А-адаптина (AP3B1: adaptorrelated protein complex 3, beta 1 subunit). Следующие 93 н.п. (фрагмент Б) не имели гомологий с известной последовательностью, а последние 45 н.п.

1 экзон H Sc H А Б N В 1 интрон Sc H 2 экзон фрагмент 26 CpG островок 26-1 26- 100 п.н.

Рисунок 11. Схематическое изображение расположения относительно друг друга первого экзона гена 3А-адаптина, фрагмента 26 и ранее обнаруженного CpG островка (Cross et. al., 1994). Вертикальная рестриктаз: H черта – обозначает Sc – местоположение ScaII;

N – сайтов NarI;

метилчувствительных – фрагмент А, HpaII;

– фрагмент Б, – фрагмент В, – неизвестная последовательность.

Стрелками обозначены праймеры.

- 69 (фрагмент В) перекрываются с последовательностью, которая ранее была обнаружена другим методом как CpG-островок (Cross et al. 1994). Нахождение фрагмента 26 и этого CpG-островка в составе единой последовательности мы подтвердили получением общего продукта амплификации ДНК из клеток HeLa с помощью праймеров 26-1 и 26-3 и его последующим секвенированием. Так как на тот момент была известна только кДНК этого гена, и отсутствовал полный сиквенс ДНК этого района, из полученных результатов следовало, что фрагмент А является частью первого экзона, а фрагмент Б и ранее обнаруженный CpG-островок представляют собой начало первого интрона. Сопоставление нуклеотидных последовательностей выделенного нами фрагмента ДНК и кДНК гена показало, что в состав первого экзона входят 220 н.п., далее следует канонический донорный сайт сплайсинга (GT), а следующие 362 н.п. не имеют гомологии с последовательность кДНК и представляют начало первого интрона. После появления и аннотирования в базах данных полной последовательности ДНК гена (Homo sapiens chromosome 5 reference genomic contig http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NT_006713.10) NT_006713, оказалось, что размер первого экзона действительно составляет 220 н.п., а первый интрон начинается с установленной нами последовательности и имеет длину 26856 н.п. Таким образом, установленные нами границы первого экзона и опубликованные позднее данные по аннотированию генома человека совпали. Несмотря на небольшую длину, фрагмент 26 обладает свойствами CpG-островка (значение Н/Т составляет 0.78, содержание GC равно 0.59). Также он оказался ограничен с обеих сторон сайтом SacII. Данный фрагмент был выявлен с помощью статистического праймера СП-2, который имеет на 3’ конце последовательность сайта SacII. Действительно, в 5' области гена 3А-адаптина имеется зона, где два сайта SacII расположены на расстоянии 275 п.н., и именно эта зона и была амплифицирована. С другой стороны - 70 анализ показал, что CpG-островок не ограничен рамками фрагмента 26. Из исследований параметра Н/Т и GC-состава следует, что в его состав входят весь первый экзон и начало первого интрона. С 3' конца он ограничен повтором HERVK14CI. На основании этого можно сделать вывод, что CpGостровок гена 3А-адаптина заканчивается в первом интроне. Из-за отсутствия полной последовательности ДНК гена 3А-адаптина невозможно было определить, продолжается ли CpG-островок в 5' регуляторную зону. Это было сделано экспериментально (см. ниже). Таким образом, все семь фрагментов ДНК, выявленных методом СППЦР, оказались GC-богатыми последовательностями, а пять из них CpGостровками. При этом они являются CpG-островками, не только по общепринятым критериям, но и по предложенным в последнее время критериям, которые позволяют исключить GC-богатые Alu-повторы: размер последовательности более 500 н.п., GC состав более 0.55, отношение экспериментально определенного числа CpG динуклеотидов к теоретически возможному (показатель Н/Т) более 0.65 (Takai and Jones, 2002). Обращает на себя внимание тот факт, что среди пяти отобранных CpG-островков не оказалось последовательностей, ассоциированных с Alu-повторами, эндогенными провирусами и рибосомальными генами. Возможно, что отсутствие такого типа CpG-островков связано с непременным условием отбирать только те CpG-островки, которые изменяли статус метилирования в опухолевых клетках по сравнению с нормальными. Отбор дифференциальнометилированных CpG-островков проводили на небольшом числе парных образцов (группы из 7 и 8 пар образцов). Анализ реального статуса метилирования в относительно большом числе опухолей и двух клеточных линиях карцином шейки матки был проведен для CpG-островков 32 и 26. 1.3. Определение статуса метилирования CpG-островка 32 при раке шейки матки. Анализ статуса метилирования CpG-островка 32 был проведен в 22 образцах опухолей шейки матки, 15 нормальных тканей шейки матки и - 71 лейкоцитов периферической крови тех же пациентов, и в двух клеточных линиях карцином шейки матки методом метил-чувствительной ПЦР. Использовали два варианта анализа: одновременное расщепление четырех (1 сайт NarI и 3 сайта HpaII) или шести (3 сайт HpaII и 3 сайта HhaI) сайтов узнавания метилчувствительных рестриктаз в участке CpG-островка, который затем подвергался амплификации. В большинстве опухолей, лейкоцитов и условно нормальных тканях и в двух клеточных линий после обработки метилчувствительными рестриктазами присутствовал продукт 271Л R RNH 271О R RNH 275Л 275О RNH HeLa R SiHa R RNH R RHHh R RHHh M 451Н R 451О 456Н 456О RHHh R RHHh R RHHh R RHHh М Рисунок 12. Анализ статуса метилирования CpG динуклеотидов, входящих в состав сайтов рестрикции метилчувствительных ферментов NarI, HpaII и HhaI в пределах CpG островка 32 методом МЧ-ПЦР. Рестрикция образцов ДНК RsaI (R);

RsaI/NarI/HpaII (RNH);

RsaI/HpaII/HhaI (RHHh). Числами вверху указаны номера образцов, где Л – ДНК из лейкоцитов, Н – ДНК из нормального эпителия, О – ДНК из опухоли шейки матки;

М – маркер 100 bp, числами справа указаны размеры маркерных фрагментов.

амплификации, что говорит о метилировании всех исследуемых сайтов (рис. 12, образцы 271, 451, 456, клетки HeLa и SiHa). В одном из 22 образцов продукт ПЦР отсутствовал (рис. 12, образец 275). Наличие метилированных аллелей исследуемого CpG-островка в большинстве лейкоцитов, опухолевых и нормальных тканях шейки матки дает основание предполагать, что CpGостровок 32 может быть расположен в подверженном импринтингу локусе хромосомы 13. Как известно, импринтинг гена сопровождается метилированием CpG-островка в одном из аллелей гена и моноаллельной экспрессией гена в нормальных клетках. Для опухолевых клеток характерна утрата импринтинга, сопровождающаяся изменением статуса метилирования CpG-островка в районе импринтированного гена и нарушением - 72 моноаллельной экспрессии гена. Недавно было обнаружено, что потеря импринтинга гена IGF-II наблюдается не только в опухолях кишечника, но и в нормальных тканях (лейкоцитах) этих же пациентов (Cui et al. 1998). Возможно, что отсутствие метилирования CpG-островка 32 у пациента 275 в опухолевой ткани и в лейкоцитах периферической крови связано с утратой импринтинга. Таким образом, CpG-островок 32 действительно дифференциально метилирован в некоторых опухолевых и нормальных тканях. Предположение о том, что CpG-островок 32 локализован в подверженном импринтингу районе хромосомы 13, указывает на необходимость соответствующего детального исследования этого района в дальнейшем. К сожалению CpGостровок 32 пока не ассоциирован с каким-либо геном. В этом районе пока не обнаружено рамок считывания, подтвержденных наличием EST. 1.4. Определение полного размера CpG-островка гена 3А-адаптина. Для последующего исследования мы выбрали CpG-островок гена 3Аадаптина, так как он оказался единственным выявленным CpG-островком, ассоциированным с известным геном. В связи с этим возникла задача установить полную длину CpG-островка. Так как 3' конец CpG-островка был известен, нам необходимо было определить его границу в 5' области гена. Для этого мы использовали один из вариантов метода "прогулки по геному". Схема опыта представлена на рисунке 13А. Первоначально геномную ДНК обрабатывали с помощью рестриктазы, образующей "липкие" концы. При этом был выбран фермент TaqI, не имеющий сайта рестрикции в известной последовательность. После этого полученные фрагменты лигировали в концентрации, при которой они предпочтительно образуют кольцевые структуры (данный этап работы был проведен сотрудником лаборатории молекулярной биологии вирусов Ешилевым Э.М., который любезно предоставил материал для клонирования). Далее полученные фрагменты ДНК, замкнутые в кольцо, амплифицировали с помощью так называемых инвертированных праймеров. Данные праймеры были подобраны к - 73 известной последовательности, однако они ориентированы в противоположные стороны. При использовании в качестве матрицы линейной ДНК такие праймеры продукта не дают, а при амплификации кольцевой молекулы образуют продукт, который содержит в своем составе следующие части: праймер 1 – 5' известная последовательность – 5' неизвестная последовательность – сайт рестрикции TaqI – 3' неизвестная последовательность – 3' известная последовательность – праймер 2. После этого проводили клонирование продукта ПЦР с последующим секвенированием в составе плазмиды.

А. ДНК Обработка TaqI Лигирование ПЦР Клонирование и секвенирование продукта ПЦР Б.

26-11 26-12 26-10 26-8 26-5 26- Рисунок 13. Схематическое изображение варианта метода "прогулка по геному". А. Схема опыта;

– известная последовательность, – неизвестная последовательность, – праймер. Б. Расположение использованных для клонирования праймеров к известной последовательности 5' области гена 3А-адаптина.

- 74 Для получения и исследования неизвестной 5’ области гена мы применяли гнездовую ПЦР с использованием двух пар инвертированных праймеров (рис. 13Б). Первоначально кольцевую ДНК амплифицировали с использованием праймеров 26-11 и 26-8. Затем проводили второй раунд ПЦР, где применяли праймеры 26-5 и 26-10. При этом в качестве матрицы использовали реакционную смесь после первого ПЦР, как в неразведенном виде, так и в разведении 1:10. На рисунке 14А представлены результаты А. 1 2 М Б. 1 Рисунок 14. Анализ фрагментов ДНК, полученных с помощью инвертированных праймеров к гену 3А-адаптину. А. Результат электрофореза в агарозном геле продуктов второго раунда ПЦР;

М – маркер PstI. Б. Гибридизация продуктов второго раунда ПЦР с радиоактивномеченным праймером 26-2. Разведение матрицы – продукта первого раунда ПЦР: 1 – неразведенный, 2 – разведение 1:10. Стрелкой указан исследуемый фрагмент. Числами справа указаны размеры маркерных фрагментов.

электрофореза в агарозном геле продуктов амплификации после второго раунда ПЦР. Видно, что в геле присутствовало несколько полос. Для выявления продукта ПЦР, содержащего необходимую нам последовательность, мы переносили амплификаты на нитроцеллюлозную мембрану и гибридизовали с радиоактивно-меченным праймером 26-2, последовательность которого должна присутствовать в продукте ПЦР, содержащем известную область гена 3А-адаптина.

Результаты гибридизации показаны на рисунке 14Б. Оказалось, что продукт с размером 1966 п.н. и является искомым. Он был клонирован и секвенирован.

- 75 А.

100 п.н. H Hh H HH H H H Sm H Hh Hh Hh 1 экзон H Sc H N 1 интрон Sc H Б.

Alu HERVK14CI Рисунок 15. Расположение вновь клонированного фрагмента в 5' области гена 3Аадаптина по отношению к ранее известным районам. А. Рестриктная карта 5’ области гена. Вертикальная черта обозначает местоположение сайтов метилчувствительных рестриктаз: H – HpaII;

Hh – HhaI;

Sm – SmaI;

Sc – ScaII;

N – NarI. Б. Распределение CpG динуклеотидов и расположение CpG островка. экзон, – интрон, обозначает единичный CpG динуклеотид. – CpG островок, – повтор, – – вновь клонированная последовательность. Вертикальная черта В результате этой работы мы определили 5' нетранскрибируюмую последовательность гена 3А-адаптина размером п.н.

Анализ объединенной последовательности 5' области гена (идентификационный номер в GenBank – AF247736.2) позволил определить размер его CpGостровка, который составил 868 п.н. (рис. 15). Он включает в себя 56 CpG динуклеотидов и имеет следующие характеристики: значение параметра Н/Т равно 0.74, GC состав – 0.60. Наибольшая плотность CpG динуклеотидов (24 из 56) и сайтов МЧР (13 из 20) наблюдается в 5' нетранскрибируемой зоне размером 238 п.н., непосредственно примыкающей к первому экзону. Наличие и положение Alu-повтора, ограничивающего CpG-островок с 5’ стороны, было определено по представленной позднее в базах данных нуклеотидной последовательности этого района хромосомы 5. Таким образом, мы установили полный размер и последовательность CpG-островка гена 3А-адаптина, который располагается в 5’ области гена и включает в себя нетранскрибируемый район, первый экзон и начало первого интрона. При этом он является CpG-островком, как по общепринятым критериям, так и по более жестким критериям (см. выше).

Pages:     || 2 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.