WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 || 3 | 4 |

«Московский международный институт эконометрики, информатики, финансов и права Алехина Г.В. ...»

-- [ Страница 2 ] --

В наши дни клавиатуры относят к малоценным быстроизнашивающимся устройствам и приспособлениям, и существенной необходимости оберегать их от износа нет. Тем не менее, за дополнительной клавиатурой сохраняется важная функция ввода символов, для которых известен расширенный код ASCII (см. выше), но неизвестно закрепление за клавишей клавиатуры. Так, например, известно, что символ <§> (параграф) имеет код 0167, а символ <°> (угловой градус) имеет код 0176, но соответствующих им клавиш на клавиатуре нет. В таких случаях для их ввода используют дополнительную панель.

Порядок ввода символов по известному ALT-коду, будет таким:

1. Нажать и удержать клавишу ALT.

2. Убедиться в том, что включен переключатель NUM LOCK.

3. Не отпуская клавиши ALT, набрать последовательно на дополнительной панели ALT-КОД вводимого символа, например: 0167.

4. Отпустить клавишу ALT. Символ, имеющий код 0167, появится на экране в позиции ввода.

Настройка клавиатуры Клавиатуры персональных компьютеров обладают свойством повтора знаков, которое используется для автоматизации процесса ввода. Оно состоит в том, что при длительном удержании клавиши начинается автоматический ввод связанного с ней кода. При этом настраиваемыми параметрами являются:

• интервал времени после нажатия, по истечении которого начнется автоматический повтор кода;

• темп повтора (количество знаков в секунду).

Средства настройки клавиатуры относятся к системным и обычно входят в состав операционной системы. Кроме параметров режима повтора настройке подлежат также используемые раскладки и органы управления, используемые для переключения раскладок.

Со средствами настройки клавиатуры Вы познакомитесь при изучении функций операционных систем.

7.4. Мышь Мышь — устройство управления манипуляторного типа.

Представляет собой плоскую коробочку с двумя-тремя кнопками.

Перемещение мыши по плоской поверхности синхронизировано с перемещением графического объекта (указателя мыши) на экране монитора.

Принцип действия В отличие от рассмотренной ранее клавиатуры, мышь не является стандартным органом управления, и персональный компьютер не имеет для нее выделенного порта. Для мыши нет и постоянного выделенного прерывания, а базовые средства ввода и вывода (BIOS) компьютера, размещенные в постоянном запоминающем устройстве (ПЗУ), не содержат программных средств для обработки прерываний мыши.

В связи с этим в первый момент после включения компьютера мышь не работает. Она нуждается в поддержке специальной системной программы — драйвера мыши. Драйвер устанавливается либо при первом подключении мыши, либо при установке операционной системы компьютера. Хотя мышь и не имеет выделенного порта на материнской плате, для работы с ней используют один из стандартных портов, средства для работы с которыми имеются в составе BIOS. Драйвер мыши предназначен для интерпретации сигналов, поступающих через порт. Кроме того, он обеспечивает механизм передачи информации о положении и состоянии мыши операционной системе и работающим программам.

Компьютером управляют перемещением мыши по плоскости и кратковременными нажатиями правой и левой кнопок (эти нажатия называются щелчками). В отличие от клавиатуры мышь не может напрямую использоваться для ввода знаковой информации — ее принцип управления является событийным. Перемещения мыши и щелчки ее кнопок являются событиями с точки зрения ее программы драйвера. Анализируя эти события, драйвер устанавливает, когда произошло событие и в каком месте экрана в этот момент находился указатель. Эти данные передаются в прикладную программу, с которой работает пользователь в данный момент. По ним программа может определить команду, которую имел в виду пользователь, и приступить к ее исполнению.

Комбинация монитора и мыши обеспечивает наиболее современный тип интерфейса пользователя, который называется графическим. Пользователь наблюдает на экране графические объекты и элементы управления. С помощью мыши он изменяет свойства объектов и приводит в действие элементы управления компьютерной системой, а с помощью монитора получает от нее отклик в графическом виде.

Стандартная мышь имеет только две кнопки, хотя существуют нестандартные мыши с тремя кнопками или с двумя кнопками и одним вращающимся регулятором. Функции нестандартных органов управления определяются тем программным обеспечением, которое поставляется вместе с устройством.

К числу регулируемых параметров мыши относятся:

чувствительность (выражает величину перемещения указателя на экране при заданном линейном перемещении мыши), функции левой и правой кнопок, а также чувствительность к двойному нажатию (максимальный интервал времени, при котором два щелчка кнопкой мыши расцениваются как один двойной щелчок). Программные средства, предназначенные для этих регулировок, обычно входят в системный комплект программного обеспечения — мы рассмотрим их при изучении операционной системы.

8. Периферийные устройства ПЭВМ Периферийные устройства персонального компьютера подключаются к его интерфейсам и предназначены для выполнения вспомогательных операций. Благодаря им компьютерная система приобретает гибкость и универсальность.

По назначению периферийные устройства можно подразделить на:

- устройства ввода данных;

- устройства вывода данных;

- устройства хранения данных;

- устройства обмена данными.

8.1. Устройства ввода знаковых данных Специальные клавиатуры Клавиатура является основным устройством ввода данных.

Специальные клавиатуры предназначены для повышения эффективности процесса ввода данных. Это достигается путем изменения формы клавиатуры, раскладки ее клавиш или метода подключения к системному блоку.

Клавиатуры, имеющие специальную форму, рассчитанную с учетом требований эргономики, называют эргономичными клавиатурами. Их целесообразно применять на рабочих местах, предназначенных для ввода большого количества знаковой информации.

Эргономичные клавиатуры не только повышают производительность наборщика и снижают общее утомление в течение рабочего дня, но и снижают вероятность и степень развития ряда заболеваний, например туннельного синдрома кистей рук и остеохондроза верхних отделов позвоночника.

Раскладка клавиш стандартных клавиатур далека от оптимальной.

Она сохранилась со времен ранних образцов механических пишущих машин. В настоящее время существует техническая возможность изготовления клавиатур с оптимизированной раскладкой, и существуют образцы таких устройств (в частности, к ним относится клавиатура Дворака). Однако практическое внедрение клавиатур с нестандартной раскладкой находится под вопросом в связи с тем, что работе с ними надо учиться специально. На практике подобными клавиатурами оснащают только специализированные рабочие места.

По методу подключения к системному блоку различают проводные и беспроводные клавиатуры. Передача информации в беспроводных системах осуществляется инфракрасным лучом.

Обычный радиус действия таких клавиатур составляет несколько метров. Источником сигнала является клавиатура.

8.2. Устройства командного управления Специальные манипуляторы Кроме обычной мыши существуют и другие типы манипуляторов, например: трекболы, пенмаусы, инфракрасные мыши.

Трекбол в отличие от мыши устанавливается стационарно, и его шарик приводится в движение ладонью руки. Преимущество трекбола состоит в том, что он не нуждается в гладкой рабочей поверхности, поэтому трекболы нашли широкое применение в портативных персональных компьютерах.

Пенмаус представляет собой аналог шариковой авторучки, на конце которой вместо пишущего узла установлен узел, регистрирующий величину перемещения.

Инфракрасная мышь отличается от обычной наличием устройства беспроводной связи с системным блоком.

Для компьютерных игр и в некоторых специализированных имитаторах применяют также манипуляторы рычажно-нажимного типа (джойстики) и аналогичные им джой-пады, геймпады и штурвально педальные устройства. Устройства этого типа подключаются к специальному порту, имеющемуся на звуковой карте, или к порту USB.

8.3. Устройства ввода графических данных Для ввода графической информации используют сканеры, графические планшеты (дигитайзеры) и цифровые фотокамеры.

Интересно отметить, что с помощью сканеров можно вводить и знаковую информацию. В этом случае исходный материал вводится в графическом виде, после чего обрабатывается специальными программ ными средствами (программами распознавания образов).

Планшетные сканеры Планшетные сканеры предназначены для ввода графической информации с прозрачного или непрозрачного листового материала.

Принцип действия этих устройств состоит в том, что луч света, отраженный от поверхности материала (или прошедший сквозь прозрачный материал), фиксируется специальными элементами, называемыми приборами с зарядовой связью (ПЗС). Обычно элементы ПЗС конструктивно оформляют в виде линейки, располагаемой по ширине исходного материала. Перемещение линейки относительно листа бумаги выполняется механическим протягиванием линейки при неподвижной установке листа или протягиванием листа при неподвижной установке линейки.

Основными потребительскими параметрами планшетных сканеров являются:

• разрешающая способность;

• производительность;

• динамический диапазон;

• максимальный размер сканируемого материала.

Разрешающая способность планшетного сканера зависит от плотности размещения приборов ПЗС на линейке, а также от точности механического позиционирования линейки при сканировании.

Типичный показатель для офисного применения: 600-1200 dpi (dpi — dots per inch — количество точек на дюйм). Для профессионального применения характерны показатели 1200-3000 dpi.

Производительность сканера определяется продолжительностью сканирования листа бумаги стандартного формата и зависит как от совершенства механической части устройства, так и от типа интерфейса, использованного для сопряжения с компьютером.

Динамический диапазон определяется логарифмом отношения яркости наиболее светлых участков изображения к яркости наиболее темных участков. Типовой показатель для сканеров офисного применения составляет 1,8-2,0, а для сканеров профессионального применения — от 2,5 (для непрозрачных материалов) до 3,5 (для прозрачных материалов).

Ручные сканеры Принцип действия ручных сканеров в основном соответствует планшетным. Разница заключается в том, что протягивание линейки ПЗС в данном случае выполняется вручную. Равномерность и точность сканирования при этом обеспечиваются неудовлетворительно, и разрешающая способность ручного сканера составляет 150-300 dpi.

Барабанные сканеры В сканерах этого типа исходный материал закрепляется на цилиндрической поверхности барабана, вращающегося с высокой скоростью. Устройства этого типа обеспечивают наивысшее разрешение (2400-5000 dpi) благодаря применению не ПЗС, а фотоэлектронных умножителей. Их используют для сканирования исходных изображений, имеющих высокое качество, но недостаточные линейные размеры (фотонегативов, слайдов и т. п.) Сканеры форм Предназначены для ввода данных со стандартных форм, заполнен ных механически или <от руки». Необходимость в этом возникает при проведении переписей населения, обработке результатов выборов и анализе анкетных данных.

От сканеров форм не требуется высокой точности сканирования, но быстродействие играет повышенную роль и является основным потребительским параметром.

Штрих-сканеры Эта разновидность ручных сканеров предназначена для ввода данных, закодированных в виде штрих-кода. Такие устройства имеют применение в розничной торговой сети.

Графические планшеты (дигитайзеры) Эти устройства предназначены для ввода художественной графической информации. Существует несколько различных принципов действия графических планшетов, но в основе всех их лежит фиксация перемещения специального пера относительно планшета. Такие устройства удобны для художников и иллюстраторов, поскольку позволяют им создавать экранные изображения привычными приемами, наработанными для традиционных инструментов (карандаш, перо, кисть).

Цифровые фотокамеры Как и сканеры, эти устройства воспринимают графические данные с помощью приборов с зарядовой связью, объединенных в прямоугольную матрицу. Основным параметром цифровых фотоаппаратов является разрешающая способность, которая напрямую связана с количеством ячеек ПЗС в матрице. Наилучшие потребительские модели в настоящее время имеют до 1 млн ячеек ПЗС и, соответственно, обеспечивают разрешение изображения до 800х точек. У профессиональных моделей эти параметры выше.

8.4. Устройства вывода данных В качестве устройств вывода данных, дополнительных к монитору, используют печатающие устройства (принтеры), позволяющие получать копии документов на бумаге или прозрачном носителе. По принципу действия различают матричные, лазерные, светодиодные и струйные принтеры.

Матричные принтеры Это простейшие печатающие устройства. Данные выводятся на бумагу в виде оттиска, образующегося при ударе цилиндрических стержней («иголок») через красящую ленту. Качество печати матричных принтеров напрямую зависит от количества иголок в печатающей головке. Наибольшее распространение имеют 9-игольчатые и 24 игольчатые матричные принтеры. Последние позволяют получать оттиски документов, не уступающие по качеству документам, исполненным на пишущей машинке.

Производительность работы матричных принтеров оценивают по количеству печатаемых знаков в секунду (cps — characters per second).

Обычными режимами работы матричных принтеров являются: draft — режим черновой печати, normal — режим обычной печати и режим NLQ (Near Letter Quality), который обеспечивает качество печати, близкое к качеству пишущей машинки.

Лазерные принтеры Лазерные принтеры обеспечивают высокое качество печати, не уступающее, а во многих случаях и превосходящее полиграфическое.

Они отличаются также высокой скоростью печати, которая измеряется в страницах в минуту (ррт —page per minute). Как и в матричных принтерах, итоговое изображение формируется из отдельных точек.

Принцип действия лазерных принтеров следующий:

- в соответствии с поступающими данными лазерная головка испускает световые импульсы, которые отражаются от зеркала и попадают на поверхность свето чувствительного барабана;

- горизонтальная развертка изображения выполняется вращением зеркала;

- участки поверхности светочувствительного барабана, получившие световой импульс, приобретают статический заряд;

- барабан при вращении проходит через контейнер, наполненный красящим составом (тонером), и тонер закрепляется на участках, имеющих статический заряд;

- при дальнейшем вращении барабана происходит контакт его поверхности с бумажным листом, в результате чего происходит перенос тонера на бумагу;

- лист бумаги с нанесенным на него тонером протягивается через нагревательный элемент, в результате чего частицы тонера спекаются и закрепляются на бумаге.

К основным параметрам лазерных принтеров относятся:

- разрешающая способность, dpi (dots per inch — точек на дюйм);

- производительность (страниц в минуту);

- формат используемой бумаги;

- объем собственной оперативной памяти.

При выборе лазерного принтера необходимо также учитывать параметр стоимости оттиска, то есть стоимость расходных материалов для получения одного печатного листа стандартного формата А4. К расходным материалам относится тонер и барабан, который после печати определенного количества оттисков утрачивает свои свойства. В качестве единицы измерения используют цент на страницу (имеются в виду центы США). В настоящее время теоретический предел по этому показателю составляет порядка 1,0-1,5. На практике лазерные принтеры массового применения обеспечивают значения от 2,0 до 6,0.

Основное преимущество лазерных принтеров заключается в возможности получения высококачественных отпечатков. Модели среднего класса обеспечивают разрешение печати до 600 dpi, а профессиональные модели — до 1200 dpi.

Светодиодные принтеры Принцип действия светодиодных принтеров похож на принцип действия лазерных принтеров. Разница заключается в том, что источни ком света является не лазерная головка, а линейка светодиодов.

Поскольку эта линейка расположена по всей ширине печатаемой страницы, отпадает необходимость в механизме формирования горизонтальной развертки и вся конструкция получается проще, надежнее и дешевле. Типичная величина разрешения печати для светодиодных принтеров составляет порядка 600 dpi.

Струйные принтеры В струйных печатающих устройствах изображение на бумаге формируется из пятен, образующихся при попадании капель красителя на бумагу. Выброс микрокапель красителя происходит под давлением, которое развивается в печатающей головке за счет парообразования. В некоторых моделях капля выбрасывается щелчком в результате пьезоэлектрического эффекта — этот метод позволяет обеспечить более стабильную форму капли, близкую к сферической.

Качество печати изображения во многом зависит от формы капли и ее размера, а также от характера впитывания жидкого красителя поверхностью бумаги. В этих условиях особую роль играют вязкостные свойства красителя и свойства бумаги.

К положительным свойствам струйных печатающих устройств следует отнести относительно небольшое количество движущихся механических частей и, соответственно, простоту и надежность механической части устройства и его относительно низкую стоимость.

Основным недостатком, по сравнению с лазерными принтерами, является нестабильность получаемого разрешения, что ограничивает возможность их применения в черно-белой полутоновой печати.

В то же время, сегодня струйные принтеры нашли очень широкое применение в цветной печати. Благодаря простоте конструкции они намного превосходят цветные лазерные принтеры по показателю качество/цена. При разрешении выше 600 dpi они позволяют получать цветные оттиски, превосходящие по качеству цветные отпечатки, получаемые фотохимическими методами.

При выборе струйного принтера следует обязательно иметь виду параметр стоимости печати одного оттиска. При том, что цена струйных печатающих устройств заметно ниже, чем лазерных, стоимость печати одного оттиска на них может быть в несколько раз выше.

8.5. Устройства хранения данных Необходимость во внешних устройствах хранения данных возникает в двух случаях:

- когда на вычислительной системе обрабатывается больше данных, чем можно разместить на базовом жестком диске;

- когда данные имеют повышенную ценность и необходимо выполнять регулярное резервное копирование на внешнее устройство (копирование данных на жестком диске не является резервным и только создает иллюзию безопасности).

В настоящее время для внешнего хранения данных используют несколько типов устройств, использующих магнитные или магнитооптические носители.

Стримеры Стримеры — это накопители на магнитной ленте. Их отличает сравнительно низкая цена. К недостаткам стримеров относят малую производительность (она связана прежде всего с тем, что магнитная лента — это устройство последовательного доступа) и недостаточную надежность (кроме электромагнитных наводок, ленты стримеров испытывают повышенные механические нагрузки и могут физически выходить из строя).

Емкость магнитных кассет (картриджей) для стримеров составляет до нескольких сот Мбайт. Дальнейшее повышение емкости за счет повышения плотности записи снижает надежность хранения, а повышение емкости за счет увеличения длины ленты сдерживается низким временем доступа к данным.

ZIP-накопители ZIP-накопители выпускаются компанией Iomega, специализиру ющейся на создании внешних устройств для хранения данных.

Устройство работает с дисковыми носителями, по размеру незначительно превышающими стандартные гибкие диски и имеющими емкость 100/250 Мбайт. ZIP-накопители выпускаются во внутреннем и внешнем исполнении. В первом случае их подключают к контроллеру жестких дисков материнской платы, а во втором — к стандартному параллельному порту, что негативно сказывается на скорости обмена данными.

Накопители HiFD Основным недостатком ZIP-накопителей является отсутствие их совместимости со стандартными гибкими дисками 3,5 дюйма. Такой совместимостью обладают устройства HiFD компании Sony. Они позволяют использовать как специальные носители емкостью Мбайт, так и обычные гибкие диски. В настоящее время распространение этих устройств сдерживается повышенной ценой.

Накопители JAZ Этот тип накопителей, как и ZIP-накопители, выпускается компа нией Iomega. По своим характеристикам JAZ-носитель приближается к жестким дискам, но в отличие от них является сменным. В зависимости от модели накопителя на одном диске можно разместить 1 или 2 Гбайт данных.

Магнитооптические устройства Эти устройства получили широкое распространение в компьютерных системах высокого уровня благодаря своей универсальности. С их помощью решаются задачи резервного копирования, обмена данными и их накопления. Однако достаточно высокая стоимость приводов и носителей не позволяет отнести их к устройствам массового спроса.

В этом секторе параллельно развиваются 5,25- и 3,5-дюймовые накопители, носители для которых отличаются в основном форм фактором и емкостью. Последнее поколение носителей формата 5,25" достигает емкости 5,2 Гбайт. Стандартная емкость для носителей 3,5" — 640 Мбайт.

В формате 3,5" недавно была разработана новая технология GIGAMO, обеспечивающая емкость носителей в 1,3 Гбайт, полностью совместимая сверху вниз с предыдущими стандартами. В перспективе ожидается появление накопителей и дисков форм-фактора 5,25", поддерживающих технологию NFR (Near Field Recording), которая обеспечит емкость дисков до 20 Гбайт, а позднее и до 40 Гбайт.

8.6. Устройства обмена данными Модем Устройство, предназначенное для обмена информацией между удаленными компьютерами по каналам связи, принято называть модемом (МОдулятор + ДЕМодулятор). При этом под каналом связи понимают физические линии (проводные, оптоволоконные, кабельные, радиочастотные), способ их использования (коммутируемые и выделенные) и способ передачи данных (цифровые или аналоговые сигналы). В зависимости от типа канала связи устройства приема передачи подразделяют на радиомодемы, кабельные модемы и прочие.

Наиболее широкое применение нашли модемы, ориентированные на подключение к коммутируемым телефонным каналам связи.

Цифровые данные, поступающие в модем из компьютера, преобразуются в нем путем модуляции (по амплитуде, частоте, фазе) в соответствии с избранным стандартом (протоколом) и направляются в телефонную линию. Модем-приемник, понимающий данный протокол, осуществляет обратное преобразование (демодуляцию) и пересылает восстановленные цифровые данные в свой компьютер. Таким образом обеспечивается удаленная связь между компьютерами и обмен данными между ними.

К основным потребительским параметрам модемов относятся:

- производительность (бит/с);

- поддерживаемые протоколы связи и коррекции ошибок;

- шинный интерфейс, если модем внутренний (ISA или PCI).

От производительности модема зависит объем данных, передаваемых в единицу времени. От поддерживаемых протоколов зависит эффективность взаимодействия данного модема с сопредельными модемами (вероятность того, что они вступят во взаимодействие друг с другом при оптимальных настройках). От шинного интерфейса в настоящее время пока зависит только простота установки и настройки модема (в дальнейшем при общем совершенствовании каналов связи шинный интерфейс начнет оказывать влияние и на производительность).

9. Вычислительные системы 9.1. Понятие вычислительной системы В связи с кризисом классической структуры ЭВМ дальнейшее поступательное развитие вычислительной техники напрямую связано с переходом к параллельным вычислениям, с идеями построения многопроцессорных систем и сетей, объединяющих большое количество отдельных процессоров и (или) ЭВМ. Здесь появляются огромные возможности совершенствования средств вычислительной техники. Но следует отметить, что при несомненных практических достижениях в области параллельных вычислений, до настоящего времени отсутствует их единая теоретическая база.

Термин вычислительная система появился в начале - середине 60-х гг. при появлении ЭВМ III поколения. Это время знаменовалось переходом на новую элементную базу - интегральные схемы.

Следствием этого явилось появление новых технических решений:

разделение процессов обработки информации и ее ввода-вывода, множественный доступ и коллективное использование вычислительных ресурсов в пространстве и во времени. Появились сложные режимы работы ЭВМ - многопользовательская и многопрограммная обработка.

Отражая эти новшества, и появился термин “вычислительная система”. Он не имеет единого толкования в литературе, его иногда даже используют применительно к однопроцессорным ЭВМ. Однако общим здесь является подчеркивание возможности построения параллельных ветвей в вычислениях, что не предусматривалось классической структурой ЭВМ.

Под вычислительной системой (ВС) понимают совокупность взаимосвязанных и взаимодействующих процессоров или ЭВМ, периферийного оборудования и программного обеспечения, предназначенную для сбора, хранения, обработки и распределения информации. Отличительной особенностью ВС по отношению к ЭВМ является наличие в них нескольких вычислителей, реализующих параллельную обработку. Создание ВС преследует следующие основные цели: повышение производительности системы за счет ускорения процессов обработки данных, повышение надежности и достоверности вычислений, предоставление пользователям дополнительных сервисных услуг и т.д.

Параллелизм в вычислениях в значительной степени усложняет управление вычислительным процессом, использование технических и программных ресурсов. Эти функции выполняет операционная система ВС.

Самыми важными предпосылками появления и развития вычислительных систем служат экономические факторы. Анализ характеристик ЭВМ различных поколений показал, что в пределах интервала времени, характеризующегося относительной стабильностью элементной базы, связь стоимости и производительности ЭВМ выражается квадратичной зависимостью-“законом Гроша”.

Сэвм = К1 П эвм Построение же вычислительных систем позволяет существенно сократить затраты, так как для них существует линейная формула n Свс = К2 П, i i= где Сэвм, Свс-соответственно стоимость ЭВМ и ВС, К1 и К2-коэффициенты пропорциональности, зависящие от технического уровня развития вычислительной техники, Пэвм, Пi-производительность ЭВМ и i-го из n комплектующих вычислителей (ЭВМ или процессоров).

На рисунке, приведенном ниже, представлены графики изменения стоимости вычислений для ЭВМ и ВС. Для каждого поколения ЭВМ и ВС существует критический порог сложности решаемых задач Пкр, после которого применение автономных ЭВМ становится экономически невыгодным, неэффективным. Критический порог определяется точкой пересечения двух приведенных зависимостей.

С ВС С ЭВМ С ВС Пкр.

П Зависимость стоимости Свс и Сэвм от производительности В настоящее время накоплен большой практический опыт в разработке и использовании ВС самого разнообразного применения.

Эти системы очень сильно отличаются друг от друга своими возможностями и характеристиками.

9.2. Классификация вычислительных систем Существует большое количество признаков, по которым классифицируют вычислительные системы.

По назначению вычислительные системы делят на универсальные и специализированные. Специализированные системы ориентированы на решение узкого класса задач, в отличие от универсальных, предназначенных для широкого спектра задач.

По типу вычислительные системы различаются на многомашинные и многопроцессорные ВС. Многомашинные вычислительные системы (ММС) появились раньше, чем многопроцессорные. Основные отличия ММС заключаются в организации связей и обмена информацией между ЭВМ комплекса.

Каждая из них сохраняет возможность автономной работы и управляется собственной ОС. Любая другая подключаемая к ней ЭВМ рассматривается как периферийное специальное устройство. В зависимости от территориальной разобщенности ЭВМ и используемых средств сопряжения обеспечивается и различная оперативность их информационного взаимодействия.

Многопроцессорные системы (МПС) строятся при комплексировании нескольких процессоров. В качестве общего ресурса они имеют общую оперативную память (ООП). Параллельная работа процессоров с ООП обеспечивается под управлением единой общей операционной системы. По сравнению с ММС здесь достигается наивысшая оперативность взаимодействия процессоров-вычислителей.

Многие исследователи [ ] считают, что использование МПС является основным магистральным путем развития вычислительной техники новых поколений.

Однако МПС имеют и существенные недостатки. Они, в первую очередь, связаны с использованием ресурсов общей оперативной памяти. При большом количестве комплексируемых процессоров возможно возникновение конфликтных ситуаций, в которых несколько процессоров обращаются с операциями типа ”чтение” и ”запись” к одним и тем же ячейкам памяти. Помимо процессоров к ООП подключаются все процессоры ввода-вывода, средства измерения времени и т.д. Поэтому вторым серьезным недостатком МПС является проблема коммутации и доступа абонентов к ООП. От того, насколько удачно решаются эти проблемы, и зависит эффективность применения МПС. Эти решения обеспечиваются аппаратно-программными средствами. Процедуры взаимодействия очень сильно усложняют структуру ОС МПС. Опыт построения подобных систем показал, что они эффективны при небольшом числе комплексируемых процессоров (от 2 до 10).

По типу ЭВМ или процессоров, используемых для построения ВС, различают однородные и неоднородные системы. Однородные системы предполагают комплексирование однотипных ЭВМ (процессоров), неоднородные - разнотипных. В однородных системах значительно упрощается разработка и обслуживание технических и программных (в основном ОС) средств. В них обеспечивается возможность стандартизации и унификации соединений и процедур взаимодействия элементов системы. Упрощается обслуживание систем, облегчается модернизация и их развитие.

По степени территориальной разобщенности вычислительных модулей ВС делятся на системы совмещенного (сосредоточенного) и распределенного (разобщенного) типов. Обычно такое деление касается только ММС. Многопроцессорные системы относятся к системам совмещенного типа. Более того, учитывая успехи микроэлектроники, это совмещение может быть очень глубоким. При появлении новых СБИС появляется возможность иметь в одном кристалле несколько параллельно работающих процессоров.

По методам управления элементами ВС различают централизованные, децентрализованные и со смешанным управлением. Помимо параллельных вычислений, производимых элементами системы, необходимо выделять ресурсы на обеспечение управления этими вычислениями. В централизованных ВС за управление отвечает главная или диспетчерская ЭВМ (процессор). Ее задачей является распределение нагрузки между элементами, выделение ресурсов, контроль состояния ресурсов, координация взаимодействия.

Централизованный орган управления в системе может быть жестко фиксирован или эти функции могут передаваться другой ЭВМ (процессору), что способствует повышению надежности системы.

Централизованные системы имеют более простые ОС. В децентрализованных системах функции управления распределены между ее элементами. Каждая ЭВМ (процессор) системы сохраняет известную автономию, а необходимое взаимодействие между элементами устанавливается по специальным наборам сигналов. С развитием ВС и, в частности, сетей ЭВМ, интерес к децентрализованным системам постоянно растет.

В системах со смешанным управлением совмещаются процедуры централизованного и децентрализованного управления.

Перераспределение функций осуществляется в ходе вычислительного процесса, исходя из сложившейся ситуации.

По принципу закрепления вычислительных функций за отдельными ЭВМ (процессорами) различают системы с жестким и плавающим закреплением функций. В зависимости от типа ВС следует решать задачи статического или динамического размещения программных модулей и массивов данных, обеспечивая необходимую гибкость системы и надежность ее функционирования.

По режиму работы ВС различают системы, работающие в оперативном и неоперативном временных режимах. Первые, как правило, используют режим реального масштаба времени. Этот режим характеризуется жесткими ограничениями на время решения задач в системе и предполагает высокую степень автоматизации процедур ввода-вывода и обработки данных.

9.3. Архитектура вычислительных систем Основным отличием ВС от отдельных ЭВМ является наличие в их структурах нескольких вычислителей (ЭВМ или процессоров). Поэтому они способны выполнять параллельные вычисления.

Поскольку ВС относятся к параллельным системам, то и рассмотрим классификацию архитектур с этой точки зрения. Эта классификация архитектур была предложена Флинном (M.Flynn) в начале 60-х годов. В ее основу заложено два возможных вида параллелизма: независимость потоков заданий (команд), существующих в системе, и независимость (несвязанность) данных, обрабатываемых в каждом потоке. Согласно данной классификации существует четыре основных архитектуры ВС:

а) одиночный поток команд - одиночный поток данных (ОКОД), в английской аббревиатуре Single Instruction Single Data (SISD),- одиночный поток инструкций - одиночный поток данных;

б) одиночный поток команд - множественный поток данных (ОКМД) или Single Instruction Multiple Data (SIMD), - одиночный поток инструкций - одиночный поток данных;

в) множественный поток команд - одиночный поток данных (МКОД) или Multiple Instruction Single Data (MISD), -множественный поток инструкций - множественный поток данных;

г) множественный поток команд - множественный поток данных (МКМД) или Multiple Instruction Multiple Data (MIMD), -множественный поток инструкций - множественный поток данных MIМD).

Архитектура ОКОД охватывает все однопроцессорные и одно машинные варианты систем, то есть с одним вычислителем. Все ЭВМ классической структуры попадают в этот класс. Здесь параллелизм вычислений обеспечивается путем совмещения выполнения операций отдельными блоками АЛУ, а также параллельная работа устройств ввода-вывода информации и процессора. Закономерности организации вычислительного процесса в этих структурах достаточно хорошо изучены.

Архитектура ОКМД предполагает создание структур векторной или матричной обработки. Системы этого типа обычно строятся как однородные, то есть процессорные элементы, входящие в систему, идентичны, и все они управляются одной и той же последовательностью команд. Однако каждый процессор обрабатывает свой поток данных.

Под эту схему хорошо подходят задачи обработки матриц или векторов (массивов), задачи решения систем линейных и нелинейных, алгебраических и дифференциальных уравнений, задачи теории поля и др. В структурах данной архитектуры желательно обеспечивать соединения между процессорами, соответствующие реализуемым математическим зависимостям. Как правило, эти связи напоминают матрицу, в которой каждый процессорный элемент связан с соседними.

Векторный или матричный тип вычислений является необходимым атрибутом любой суперЭВМ.

Рис. 9.3.1. Архитектура ВС: а- ОКОД (SISD) - архитектура;

б- ОКМД (SIMD) - архитектура Архитектура МКОД предполагает построение своеобразного процессорного конвейера, в котором результаты обработки передаются от одного процессора к другому по цепочке. Выгоды такого вида обработки понятны. Однако в большинстве алгоритмов очень трудно выявить подобный, регулярный характер вычислений. Кроме того, на практике нельзя обеспечить и “большую длину” такого конвейера, при котором достигается наивысший эффект. Вместе с тем конвейерная схема нашла применение в так называемых скалярных процессорах суперЭВМ, в которых они применяются как специальные процессоры для поддержки векторной обработки.

Архитектура МКМД предполагает, что все процессоры системы работают по своим программам с собственным потоком команд. В простейшем случае они могут быть автономны и независимы. Такая схема использования ВС часто применяется на многих крупных вычислительных центрах для увеличения пропускной способности центра.

Рис.9.3.2. Архитектура ВС: в- МКОД (MISD) - архитектура;

г- МКМД (MIMD) - архитектура 9.3.1. МКМД – структуры Наибольший интерес представляют МКМД-структуры, в которых каждый вычислитель (ЭВМ или процессор) выполняет часть общей задачи. Не случайно, что после разочарований в структурах суперЭВМ, основанных на различном сочетании векторной и конвейерной обработки, усилия теоретиков и практиков обращены в этом направлении.

Уже из названия МКМД структур видно, что в данных системах можно найти все перечисленные виды параллелизма. Этот класс дает большое разнообразие структур, сильно отличающихся друг от друга своими характеристиками.

Рис.9.3.1.1. Типовые структуры ВС в МКМД (MIMD) - классе Важную роль здесь играют способы взаимодействия ЭВМ или процессоров в системе. В сильно связанных системах достигается высокая оперативность взаимодействия процессоров посредством общей оперативной памяти. При этом пользователь имеет дело с многопроцессорными вычислительными системами. Наиболее простыми по строению и организации функционирования являются однородные, симметричные структуры. Они обеспечивают простоту подключения процессоров и не требуют очень сложных централизованных операционных систем, размещаемых на одном из процессоров.

Появление мощных микропроцессоров типа Pentium привело к экспериментам по созданию многопроцессорных систем на их основе.

Так для включения мощных серверов в локальные сети персональных компьютеров была предложена несколько измененная структура использования ООП - SMP (Shared Memory multiProcessing мультипроцессирование с разделением памяти). На общей шине оперативной памяти можно комплексировать от четырех до десяти микропроцессоров.

Слабосвязанные МКМД - системы могут строиться как многомашинные комплексы или использовать в качестве средств передачи информации общее поле внешней памяти на дисковых накопителях большой емкости.

Невысокая оперативность взаимодействия заранее предопределяет ситуации, в которых число межпроцессорных конфликтов при обращении к общим данным и к друг другу было бы минимальным. Для этого необходимо, чтобы ЭВМ комплекса обменивались друг с другом с небольшой частотой, обеспечивая автономность процессов (программы и данные к ним) и параллелизм их выполнения. Только в этом случае обеспечивается надлежащий эффект. Эти проблемы решаются в сетях ЭВМ.

Успехи микроинтегральной технологии и появление БИС и СБИС позволяют расширить границы и этого направления. Возможно построение систем с десятками, сотнями и даже тысячами процессорных элементов, с размещением их в непосредственной близости друг от друга. Если каждый процессор системы имеет собственную память, то он так же будет сохранять известную автономию в вычислениях. Считается, что именно такие системы займут доминирующее положение в мире суперкомпьютеров в ближайшие десять-пятнадцать лет. Подобные ВС получили название систем с массовым параллелизмом (MMP-Mass-Parallel Processing).

Все процессорные элементы в таких системах должны быть связаны единой коммутационной средой. Нетрудно видеть, что здесь возникают проблемы, аналогичные ОКМД системам, но на новой технологической основе.Передача данных в МРР - системах предполагает обмен не отдельными данными под централизованным управлением, а подготовленными процессами (программами вместе с данными). Этот принцип построения вычислений уже не соответствует принципам программного управления классической ЭВМ. Передача данных процесса по его готовности больше соответствует принципам построения “потоковых машин” (машин, управляемых потоками данных). Подобный подход позволяет строить системы с громадной производительностью и реализовывать проекты с любыми видами параллелизма, например перейти к “систолическим вычислениям” с произвольным параллелизмом. Однако для этого необходимо решить целый ряд проблем, связанных с описанием и программированием коммутаций процессов и управления ими. Математическая база этой науки в настоящее время практически отсутствует.

9.3.2. Кластеры Вычислительные системы, как мощные средства обработки заданий пользователей, широко используются не только автономно, но и в сетях ЭВМ в качестве серверов.

С увеличением размеров сетей и их развитием возрастают плотности информационных потоков, нагрузка на средства доступа к сетевым ресурсам и на средства обработки заданий. Круг задач, решаемый серверами, постоянно расширяется, становится многообразным и сложным. Чем выше ранг сети, тем более специализированными они становятся. Администраторы сетей должны постоянно наращивать их мощь и количество, оптимизируя характеристики сети под возрастающие запросы пользователей.

Как и во всякой развивающейся технологии, сложные универсальные серверы различных фирм-изготовителей должны были уступить место стандартным массовым решениям. Успехи микроэлектроники, повсеместное применение ПЭВМ, широкое распространение Internet/Intranet технологий позволили перейти к более простым и дешевым системам, например, на основе платформы Wintel.

Опыт создания серверов на основе SMP- и MPP-структур показал, что они не обеспечивают хорошей адаптации к конкретным условиям функционирования, остаются дорогими и сложными в эксплуатации Одним из перспективных направлений здесь является кластеризация, то есть технология, с помощью которой несколько серверов, сами являющиеся вычислительными системами, объединяются в единую систему более высокого ранга для повышения эффективности функционирования системы в целом.

Целями построения кластеров могут служить:

• улучшение масштабируемости (способность к наращиванию мощности);

• повышение надежности и готовности системы в целом;

• увеличение суммарной производительности;

• эффективное перераспределение нагрузок между компьютерами кластера;

• эффективное управление и контроль работы системы и т.п.

Улучшение масштабируемости или способности к наращиванию мощности предусматривает, что все элементы кластера имеют аппаратную, программную и информационную совместимость. В сочетании с простым и эффективным управлением изменение оборудования в идеальном кластере должно обеспечивать соответствующее изменение значений основных характеристик, то есть добавление новых процессоров, дисковых систем должно сопровождаться пропорциональным ростом производительности, надежности и т.п. В реальных системах эта зависимость имеет нелинейный характер.

Масштабируемость SMP- и MPP-структур достаточна ограничена.

При большом числе процессоров в SMP-структурах возрастает число конфликтов при обращении к общей памяти, а в MPP-структурах плохо решаются задачи преобразования и разбиения приложений на отдельные задания процессорам. В кластерах же администраторы сетей получают возможность увеличивать пропускную способность сети за счет включения в него дополнительных серверов, даже уже из числа работающих, с учетом того, что балансировка и оптимизация нагрузки будут выполняться автоматически.

Следующей важной целью создания кластера является повышение надежности и готовности системы в целом. Именно эти качества способствуют популярности и развитию кластерных структур.

Избыточность, изначально заложенная в кластеры, способна их обеспечить. Основой этого служит возможность каждого сервера кластера работать автономно, но в любой момент он может переключиться на выполнение работ другого сервера в случае его отказа.

Коэффициент готовности систем рассчитывается по формуле:

Кг=Тр/(Tp+To), где Tp - полезное время работы системы;

To - время отказа и восстановления системы, в течение которого она не могла выполнять свои функции.

Большинство современных серверов имеет 99 - процентную готовность. Это означает, что около четырех дней в году они не работают. Подчеркнем, что готовность 99,9%, достигаемая обычно спаркой серверов - основного и резервного, означает годовой простой около 500 минут, 99,999% - пять минут, а 99,9999% - 30 секунд.

Появление критически важных приложений в областях бизнеса, финансов, телекоммуникаций, здравоохранения и др. требует обеспечения коэффициента готовности не менее, чем "заветные пять девяток" и даже выше.

Повышение суммарной производительности кластера, объединяющего несколько серверов, обычно не является самоцелью, а обеспечивается автоматически. Ведь каждый сервер кластера сам является достаточно мощной вычислительной системой, рассчитанной на выполнение им всех необходимых функций в части управления соответствующими сетевыми ресурсами. С развитием сетей все большее значение приобретают и распределенные вычисления. При этом многие компьютеры, в том числе и серверы могут иметь не очень большую нагрузку. Свободные ресурсы домашних компьютеров, рабочих станций локальных вычислительных сетей, да и самих серверов можно использовать для выполнения каких-либо трудоемких вычислений. При этом стоимость создания подобных вычислительных кластеров очень мала, так как все их составные части работают в сети и только при необходимости образуют виртуальный (временный) вычислительный комплекс.

Совокупные вычислительные мощности кластеров могут быть сравнимы с мощностями супер-ЭВМ и даже превышать их при неизмеримо меньшей стоимости. Такие технологии применительно к отдельным классам задач хорошо отработаны. Например, существует задача анализа сигналов, принимаемых радиотелескопами, с целью поиска внеземных цивилизаций;

имеется проект distributed.net, реализующий алгоритм дешифрирования и др. Круг подобных задач не очень широк, но число одновременно привлекаемых компьютеров для этих целей может быть громадным - десятки, сотни и даже тысячи.

Работа кластера под управлением единой операционной системы позволяет оперативно контролировать процесс вычислений и эффективно перераспределять нагрузки на компьютеры кластера.

Управление такими проектами требует создания специального клиентского и серверного программного обеспечения, работающего в фоновом режиме. Компьютеры при этом периодически получают задания от сервера, включаются в работу и возвращают результаты обработки. Последние версии браузеров (browser) еще более упрощают процесс взаимодействия, так как на клиентской машине могут активизировать выполнение различных программ-сценариев (скриптов).

Эффективное управление и контроль работы системы подразумевает возможность работы отдельно с каждым узлом, вручную или программно отключать его для модернизации или ремонта с последующим возвращением его в работающий кластер. Эти операции скрыты от пользователей, они просто не замечают их. Кластерное ПО, интегрированное в операционные системы серверов, позволяет работать с узлами как с единым пулом ресурсов (Single System Image - SSI),внося необходимые общие изменения с помощью одной операции для всех узлов.

Кластеры объединяют несколько серверов под единым управлением. Все новые серверы, как правило, являются многопроцессорными и относятся к SMP-структурам, что обеспечивает многоступенчатую возможность переключения нагрузки отказавшего элемента как внутри кластера, так и внутри сервера. Существуют серверы с различным количеством процессоров (от двух до шестнадцати). Правда, фирма Sun работает над созданием 64 процессорной SMP-модели сервера. IBM предполагает с появлением микропроцессора 1А-64 Merced (новое название его - Itanium) выпустить SMP-систему, рассчитанную на 16 процессоров. Напротив, фирма Dell считает, что применение более восьми процессоров в SMP структуре применять нецелесообразно из-за трудностей преодоления конфликтов при обращении их к общей оперативной памяти.

Большой интерес к построению кластеров стала проявлять фирма Microsoft. В связи широкой популярностью операционной системы Windows NT, предназначенной для управления сетями крупных предприятий, появились различные варианты кластерного обеспечения.

Сама фирма Microsoft предлагает бесплатную версию своего кластерного ПО, встроенного в Windows NT и поддерживающего Microsoft Cluster Server (MSCS). Этот кластерный продукт, известный под названием Wolfpack ("волчья стая"), еще достаточно слаб, но сильно прогрессирует. В настоящее время он обеспечивает разделение нагрузки между двумя узлами-серверами и то только путем замены одного сервера другим, а не путем ее перераспределения.

Достаточно трудно решается и проблема масштабирования, так как четырех узловая схема эквивалентна лишь двойному увеличению производительности по сравнению с одним узлом. Предполагается, что в будущем он будет поддерживать до 16 узлов в кластере.

Унификация инженерно-технических решений предполагает соответственно и стандартизацию аппаратных и программных процедур обмена данными между серверами. Для передачи управляющей информации в кластере используются специальные магистрали, имеющие более высокие скорости обмена данными. В качестве такого стандарта предлагается интеллектуальный ввод-вывод (Intellident Input/Output - I2O). Спецификация I2O определяет унифицированный интерфейс между операционной системой и устройствами ввода вывода, освобождая процессоры и их системные шины от обслуживания периферии.

Как и у любой новой технологии, у кластеризации имеются свои недостатки:

• задержки разработки и принятия общих стандартов;

• большая доля нестандартных и закрытых разработок различных фирм, затрудняющих их совместное использование;

• трудности управления одновременным доступом к файлам;

• сложности с управлением конфигурацией, настройкой, развертыванием, оповещениями серверов о сбоях и т.п.

10. Компьютерные сети: основные понятия Компьютерная сеть (КС)- это сеть обмена и распределенной обработки информации, образуемая множеством взаимосвязанных абонентских систем и средствами связи;

средства передачи и обработки информации ориентированы в ней на коллективное использование общесетевых ресурсов - аппаратных, информационных, программных.

Абонентская система (АС) - это совокупность ЭВМ, программного обеспечения, периферийного оборудования, средств связи с коммуникационной подсетью компьютерной сети, выполняющих прикладные процессы.

Коммуникационная подсеть, или телекоммуникационная система (ТКС), представляет собой совокупность физической среды передачи информации, аппаратных и программных средств, обеспечивающих взаимодействие АС.

Прикладной процесс - это различные процедуры ввода, хранения, обработки и выдачи информации, выполняемые в интересах пользователей и описываемые прикладными программами.

11. Характеристика компьютерных сетей С появлением КС удалось разрешить две очень важные проблемы: обеспечение в принципе неограниченного доступа к ЭВМ пользователей независимо от их территориального расположения и возможность оперативного перемещения больших массивов информации на любые расстояния, позволяющая своевременно получать данные для принятия тех или иных решений.

Для КС принципиальное значение имеют следующие обстоятельства:

• ЭВМ, находящиеся в составе разных абонентских систем одной и той же сети или различных взаимодействующих сетей, связываются между собой автоматически (в этом заключается основная сущность протекающих в сети процессов);

• каждая ЭВМ сети должна быть приспособлена как для работы в автономном режиме под управлением своей операционной системы (ОС), так и для работы в качестве составного звена сети.

КС могут работать в различных режимах: обмена данными между АС, запроса и выдачи информации, сбора информации, пакетной обработки данных по запросам пользователей с удаленных терминалов, в диалоговых режимах.

По сравнению с адекватной по вычислительной мощности совокупностью автономно работающих ЭВМ сеть имеет ряд преимуществ:

• обеспечение распределенной обработки данных и параллельной обработки многими ЭВМ;

• возможность создания распределенной базы данных (РБД), размещаемой в памяти различных ЭВМ;

• возможность обмена большими массивами информации между ЭВМ, удаленными друг от друга на значительные расстояния;

• коллективное использование дорогостоящих ресурсов:

прикладных программных продуктов, баз данных (БД), баз знаний (БЗ), запоминающих устройств (ЗУ), печатающих устройств;

• предоставление большего перечня услуг, в том числе таких, как электронная почта (ЭП), телеконференции, электронные доски объявлений (ЭДО), дистанционное обучение;

• повышение эффективности использования средств вычислительной техники и информатики (СВТИ) за счет более интенсивной и равномерной их загрузки, а также надежности обслуживания запросов пользователей;

• возможность оперативного перераспределения вычислительных мощностей между пользователями сети в зависимости от изменения их потребностей, а также резервирования этих мощностей и средств передачи данных на случай выхода из строя отдельных элементов сети;

• сокращение расходов на приобретение и эксплуатацию СВТИ (за счет коллективного их использования);

• облегчение работ по совершенствованию технических, программных и информационных средств.

12. Характеристика возможностей компьютерной сети Характеризуя возможности той или иной КС, следует оценивать ее аппаратное, информационное и программное обеспечение.

Аппаратное обеспечение составляют ЭВМ различных типов, средства связи, оборудование абонентских систем, оборудование узлов связи, аппаратура связи и согласования работы сетей одного и того же уровня или различных уровней. Основные требования к ЭВМ сетей это универсальность, т.е. возможность выполнения практически неограниченного круга задач пользователей, и модульность, обеспечивающая возможность изменения конфигурации ЭВМ. В сетях, в зависимости от их назначения, используются ЭВМ в широком диапазоне по своим характеристикам: от суперЭВМ до ПЭВМ. ЭВМ могут размещаться либо в непосредственной близости от пользователей (например, ПЭВМ в составе абонентской системы, т.е. на рабочем месте пользователя), либо в центре обработки информации (ЦОИ), который является звеном сети и к которому пользователи обращаются с запросами со своих АС.

Информационное обеспечение сети представляет собой единый информационный фонд, ориентированный на решаемые в сети задачи и содержащий массивы данных общего применения, доступные для всех пользователей (абонентов) сети, и массивы индивидуального пользования, предназначенные для отдельных абонентов. В состав информационного обеспечения входят базы знаний, автоматизированные базы данных — локальные и распределенные, общего и индивидуального назначения.

Программное обеспечение (ПО) компьютерных сетей отличается большим многообразием как по своему составу, так и по выполняемым функциям. Оно автоматизирует процессы программирования задач обработки информации, осуществляет планирование и организацию коллективного доступа к телекоммуникационным, вычислительным и информационным ресурсам сети, динамическое распределение и перераспределение этих ресурсов с целью повышения оперативности и надежности удовлетворения запросов пользователей и т.д.

Создание КС — сложная комплексная задача, требующая согласованного решения ряда вопросов: выбора рациональной структуры сети, соответствующей ее назначению и удовлетворяющей поставленным требованиям (определяется состав элементов и звеньев сети, их расположение, способы соединения);

выбора типа линий и каналов связи между звеньями сети и оценки их пропускной способности;

обеспечения способности доступа пользователей к общесетевым ресурсам, в частности за счет оптимального решения задач маршрутизации;

распределения аппаратных, информационных и программных ресурсов по звеньям сети;

защиты информации, циркулирующей в сети, от несанкционированного доступа и др. Все эти вопросы решаются с учетом требований, предъявляемых к сети по главным показателям: временным — для оценки оперативности удовлетворения запросов пользователей;

надежностным — для оценки надежности своевременного удовлетворения этих запросов;

экономическим — для оценки капитальных вложений на создание и внедрение сети и текущих затрат при эксплуатации и использовании.

13. Классификация компьютерных сетей В основу классификации КС положены наиболее характерные функциональные, информационные и структурные признаки.

По степени территориальной рассредоточенности элементов сети (абонентских систем, узлов связи) различают глобальные, региональные и локальные компьютерные сети.

Глобальная компьютерная сеть (ГКС) объединяет абонентские системы, рассредоточенные на большой территории, охватывающей различные страны и континенты. ГКС решают проблему объединения информационных ресурсов всего человечества и организации доступа к ним. Взаимодействие АС осуществляется на базе различных территориальных сетей связи, в которых используются телефонные линии связи, радиосвязь, системы спутниковой связи.

Региональная компьютерная сеть (РКС) объединяет абонентские системы, расположенные друг от друга на значительном расстоянии: в пределах отдельной страны, региона, большого города.

Локальная компьютерная сеть (ЛКС) связывает абонентские системы, расположенные в пределах небольшой территории. К классу ЛКС относятся сети предприятий, фирм, банков, офисов, учебных заведений и т.д. Протяженность ЛКС ограничивается несколькими километрами.

Отдельный класс составляют корпоративные компьютерные сети (ККС). Корпоративная сеть является технической базой корпорации. Ей принадлежит ведущая роль в реализации задач планирования, организации и осуществления производственно – хозяйственной деятельности корпорации.

Объединение локальных, региональных, корпоративных и глобальных сетей позволяет создавать сложные многосетевые иерархии.

По способу управления КС делятся на сети с централизованным (в сети имеется один или несколько управляющих органов), децентрализованным (каждая АС имеет средства для управления сетью) и смешанным управлением, в которых в определенном сочетании реализованы принципы централизованного и децентрализованного управления (например, под централизованным управлением решаются только задачи с высшим приоритетом, связанные с обработкой больших объемов информации).

По организации передачи информации сети делятся на сети с селекцией информации и маршрутизацией информации. В сетях с селекцией информации, строящихся на основе моноканала, взаимодействие АС производится выбором (селекцией) адресованных им блоков данных (кадров): всем АС сети доступны все передаваемые в сети кадры, но копию кадра снимают только АС, кому они предназначены. В сетях с маршрутизацией информации для передачи кадров от отправителя к получателю могут использоваться несколько маршрутов. Поэтому с помощью коммуникационных систем сети решается задача выбора оптимального (например, кратчайшего по времени доставки кадра адресату) маршрута.

По типу организации передачи данных сети с маршрутизацией информации делятся на сети с коммутацией цепей (каналов), коммутацией сообщений и коммутацией пакетов. В эксплуатации находятся сети, в которых используются смешанные системы передачи данных.

По топологии, т.е. конфигурации элементов в КС, сети могут делиться на два класса: широковещательные и последовательные.

Широковещательные конфигурации и значительная часть последовательных конфигураций (“кольцо”, “звезда” с интеллектуальным центром, иерархическая) характерны для локальных компьютерных сетей. Для глобальных и региональных сетей наиболее распространенной является произвольная (ячеистая) топология. Нашли применение также иерархическая конфигурация и “звезда”.

Рис. 4.1 Широковещательные конфигурации сетей: общая шина а) Рис. 4.2. Широковещательные конфигурации сетей: дерево Рис. 4.3. Широковещательные конфигурации сетей: звезда с пассивным центром 2 а) б) 6 г) в) 8 7 д) Рис. 4.4. Последовательные конфигурации сетей: а - произвольная (ячеистая);

б- иерархическая;

в - кольцо;

г - цепочка;

д - звезда с «интеллектуальным» центром В широковещательных конфигурациях в любой момент времени на передачу кадра может работать только одна рабочая станция (абонентная система). Остальные рабочие станции (РС) сети могут принимать этот кадр, т.е. такие конфигурации характерны для ЛКС с селекцией информации.

Основные типы широковещательной конфигурации - общая шина, дерево, звезда с пассивным центром. Главные достоинства ЛКС с общей шиной - простота расширения сети, простота используемых методов управления, минимальный расход кабеля.

ЛКС с топологией типа дерево - это более развитый вариант сети с шинной топологией. Дерево образуется путем соединения нескольких шин активными повторителями или пассивными размножителями (“хабами”), каждая ветвь дерева представляет собой сегмент. Отказ одного сегмента не приводит к выходу из строя остальных.

В ЛКС с топологией типа “звезда” в центре находится пассивный соединитель или активный повторитель - достаточно простые и надежные устройства. Для защиты от нарушений в кабеле используется центральное реле, которое отключает вышедшие из строя кабельные лучи.

В последовательных конфигурациях, характерных для сетей с маршрутизацией информации, передача данных осуществляется последовательно от одной РС к соседней, причем на различных участках сети могут использоваться разные виды физической передающей среды.

К передатчикам и приемникам здесь предъявляются более низкие требования, чем в широковещательных конфигурациях. К последовательным конфигурациям относятся произвольная (ячеистая), иерархическая, “кольцо”, “цепочка”, “звезда” с интеллектуальным центром. В ЛКС наибольшее распространение получили общая шина, “кольцо” и “звезда”, а также смешанные конфигурации - звездно кольцевая, звездно-шинная.

В ЛКС с кольцевой топологией сигналы передаются только в одном направлении, обычно против часовой стрелки. Каждая РС имеет память объемом до целого кадра.

При перемещении кадра по кольцу каждая РС принимает кадр, анализирует его адресное поле, снимает копию кадра, если он адресован данной РС, ретранслирует кадр. Естественно, что все это замедляет передачу данных в кольце, причем длительность задержки определяется числом РС. Удаление кадра из кольца производится обычно станцией - отправителем.

В этом случае кадр совершает по кольцу полный круг и возвращается к станции - отправителю, который воспринимает его как квитанцию - подтверждение получения кадра адресатом. Удаление кадра из кольца может осуществляться и станцией - получателем, тогда кадр не совершает полного круга, а станция - отправитель не получает квитанции - подтверждения.

Кольцевая структура обеспечивает довольно широкие функциональные возможности ЛКС при высокой эффективности использования моноканала, низкой стоимости, простоте методов управления, возможности контроля работоспособности моноканала.

В широковещательных и большинстве последовательных конфигураций (за исключением кольца) каждый сегмент кабеля должен обеспечивать передачу сигналов в обоих направлениях, что достигается:

в полудуплексных сетях связи - использованием одного кабеля для поочередной передачи в двух направлениях;

в дуплексных сетях - с помощью двух однонаправленных кабелей;

в широкополосных системах - применением различной несущей частоты для одновременной передачи сигналов в двух направлениях.

Глобальные и региональные сети, как и локальные, в принципе могут быть однородными (гомогенными), в которых применяются программно-совместимые ЭВМ, и неоднородными (гетерогенными), включающими программно-несовместимые ЭВМ. Однако, учитывая протяженность ГКС и РКС и большое количество используемых в них ЭВМ, такие сети чаще бывают неоднородными.

14. Локальные компьютерные сети: принципы организации 14.1. Понятие и основные компоненты локальных сетей Локальная компьютерная сеть представляет собой систему распределенной обработки данных, охватывающую небольшую территорию (диаметром до 10 км) внутри учреждений, НИИ, вузов, банков, офисов и т.п., т.е. это система взаимосвязанных и распределенных на фиксированной территории средств передачи и обработки информации, ориентированных на коллективное использование общесетевых ресурсов - аппаратных, информационных, программных. ЛКС можно рассматривать как коммуникационную систему, которая поддерживает в пределах одного здания или некоторой ограниченной территории один или несколько высокоскоростных каналов передачи информации, предоставляемых подключенным абонентским системам (АС) для кратковременного использования.

В обобщенной структуре ЛКС выделяются совокупность абонентских узлов, или систем (их число может быть от десятков до сотен), серверов и коммуникационная подсеть (КП).

Основными компонентами сети являются кабели (передающие среды), рабочие станции (АРМ пользователей сети), платы интерфейса сети (сетевые адаптеры), серверы сети.

Рабочими станциями (РС) в ЛКС служат, как правило, персональные компьютеры (ПК). На РС пользователями сети реализуются прикладные задачи, выполнение которых связано с понятием вычислительного процесса.

Серверы сети - это аппаратно-программные системы, выполняющие функции управления распределением сетевых ресурсов общего доступа, но могут работать и как обычная абонентская система.

В качестве аппаратной части сервера используется достаточно мощный ПК, мини-ЭВМ, большая ЭВМ или компьютер, спроектированный специально как сервер. В ЛКС может быть несколько различных серверов для управления сетевыми ресурсами, однако всегда имеется один (или более) файл-сервер (сервер баз данных) для управления внешними ЗУ общего доступа и организации распределенных баз данных (РБД).

Рабочие станции и серверы соединяются с кабелем коммуникационной подсети с помощью интерфейсных плат - сетевых адаптеров (СА). Основные функции СА: организация приема (передачи) данных из (в) РС, согласование скорости приема (передачи) информации (буферизация), формирование пакета данных, параллельно последовательное преобразование (конвертирование), кодирование/декодирование данных, проверка правильности передачи, установление соединения с требуемым абонентом сети, организация собственно обмена данными. В ряде случаев перечень функций СА существенно увеличивается, и тогда они строятся на основе микропроцессоров и встроенных модемов.

В ЛКС в качестве кабельных передающих сред используются витая пара, коаксиальный кабель и оптоволоконный кабель.

Кроме указанного, в ЛКС используется следующее сетевое оборудование:

• приемопередатчики (трансиверы) и повторители (репитеры) - для объединения сегментов локальной сети с шинной топологией;

• концентраторы (хабы) - для формирования сети произвольной топологии (используются активные и пассивные концентраторы);

• мосты - для объединения локальных сетей в единое целое и повышения производительности этого целого путем регулирования трафика (данных пользователя) между отдельными подсетями;

• маршрутизаторы и коммутаторы - для реализации функций коммутации и маршрутизации при управлении трафиком в сегментированных (состоящих из взаимосвязанных сегментов) сетях. В отличие от мостов, обеспечивающих сегментацию сети на физическом уровне, маршрутизаторы выполняют ряд “интеллектуальных” функций при управлении трафиком.

Коммутаторы, выполняя практически те же функции, что и маршрутизаторы, превосходят их по производительности и обладают меньшей латентностью (аппаратная временная задержка между получением и пересылкой информации);

• модемы (модуляторы - демодуляторы) - для согласования цифровых сигналов, генерируемых компьютером, с аналоговыми сигналами типичной современной телефонной линии;

• анализаторы - для контроля качества функционирования сети;

• сетевые тестеры - для проверки кабелей и отыскания неисправностей в системе установленных кабелей.

14.2. Характеристики локальных сетей К основным характеристикам ЛКС относятся следующие:

•территориальная протяженность сети (длина общего канала связи);

•максимальная скорость передачи данных;

•максимальное число АС в сети;

•максимально возможное расстояние между рабочими станциями в сети;

•топология сети;

•вид физической среды передачи данных;

•максимальное число каналов передачи данных;

•тип передачи сигналов (синхронный или асинхронный);

•метод доступа абонентов в сеть;

•структура программного обеспечения сети;

•возможность передачи речи и видеосигналов;

•условия надежной работы сети;

•возможность связи ЛКС между собой и сетью более высокого уровня;

•возможность использования процедуры установления приоритетов при одновременном подключении абонентов к общему каналу.

14.3. Области применения локальных компьютерных сетей К числу наиболее типичных областей применения ЛКС относятся следующие.

Обработка текстов - одна из наиболее распространенных функций средств обработки информации, используемых в ЛКС.

Передача и обработка информации в сети, развернутой на предприятии (в организации, вузе и т.д.), обеспечивает реальный переход к “безбумажной” технологии, вытесняя полностью или частично пишущие машинки.

Организация собственных информационных систем, содержащих автоматизированные базы данных - индивидуальные и общие, сосредоточенные и распределенные. Такие БД могут быть в каждой организации или фирме.

Обмен информацией между АС сети - важное средство сокращения до минимума бумажного документооборота. Передача данных и связь занимают особое место среди приложений сети, так как это главное условие нормального функционирования современных организаций.

Обеспечение распределенной обработки данных, связанное с объединением АРМ всех специалистов данной организации в сеть.

Несмотря на существенные различия в характере и объеме расчетов, проводимых на АРМ специалистами различного профиля, используемая при этом информация в рамках одной организации, как правило, находится в единой (интегрированной) базе данных. Поэтому объединение таких АРМ в сеть является целесообразным и весьма эффективным решением.

Поддержка принятия управленческих решений, предоставляющая руководителям и управленческому персоналу организации достоверную и оперативную информацию, необходимую для оценки ситуации и принятия правильных решений.

Организация электронной почты - одного из видов услуг ЛКС, позволяющей руководителям и всем сотрудникам предприятия оперативно получать всевозможные сведения, необходимые в его производственно-хозяйственной, коммерческой и торговой деятельности.

Коллективное использование дорогостоящих ресурсов необходимое условие снижения стоимости работ, выполняемых в порядке реализации вышеуказанных применений ЛКС. Речь идет о таких ресурсах, как высокоскоростные печатающие устройства, запоминающие устройства большой емкости, мощные средства обработки информации, прикладные программные системы, базы данных, базы знаний. Очевидно, что такие средства нецелесообразно (вследствие невысокого коэффициента использования и дороговизны) иметь в каждой абонентской системе сети. Достаточно, если в сети эти средства имеются в одном или нескольких экземплярах, но доступ к ним обеспечивается для всех АС.

В зависимости от характера деятельности организации, в которой развернута одна или несколько локальных сетей, указанные функции реализуются в определенной комбинации. Кроме того, могут выполняться и другие функции, специфические для данной организации.

14.4. Типы локальных сетей Для деления ЛКС на группы используются определенные классификационные признаки.

По назначению ЛКС делятся на информационные (информационно-поисковые), управляющие (технологическими, административными, организационными и другими процессами), расчетные, информационно-расчетные, обработки документальной информации и другие.

По типам используемых в сети ЭВМ их можно разделить на неоднородные, где применяются различные классы (микро-, мини-, большие) и модели (внутри классов) ЭВМ, а также различное абонентское оборудование, и однородные, содержащие одинаковые модели ЭВМ и однотипный состав абонентских средств.

По организации управления однородные ЛКС различаются на сети с централизованным и децентрализованным управлением.

В сетях с централизованным управлением выделяются одна или несколько машин (центральных систем или органов), управляющих работой сети. Диски выделенных машин, называемых файл-серверами или серверами баз данных, доступны всем другим компьютерам (рабочим станциям) сети. На серверах работает сетевая операционная система, обычно мультизадачная. Рабочие станции имеют доступ к дискам серверов и совместно используемым принтерам, но, как правило, не могут работать непосредственно с дисками других РС. Серверы могут быть выделенными, и тогда они выполняют только задачи управления сетью и не используются как РС, или невыделенными, когда параллельно с задачей управления сетью выполняют пользовательские программы (при этом снижается производительность сервера и надежность работы всей сети из-за возможной ошибки в пользовательской программе, которая может привести к остановке работы сети). Такие сети отличаются простотой обеспечения функций взаимодействия между АС ЛКС, но их применение целесообразно при сравнительно небольшом числе АС в сети. В сетях с централизованным управлением большая часть информационно-вычислительных ресурсов сосредоточена в центральной системе. Они отличаются также более надежной системой защиты информации.

Если информационно-вычислительные ресурсы ЛКС равномерно распределены по большому числу АС, централизованное управление малоэффективно из-за резкого увеличения служебной (управляющей) информации. В этом случае эффективными оказываются сети с децентрализованным (распределенным) управлением, или одноранговые. В таких сетях нет выделенных серверов, функции управления сетью передаются по очереди от одной РС к другой. Рабочие станции имеют доступ к дискам и принтерам других РС. Это облегчает совместную работу групп пользователей, но производительность сети несколько понижается. Недостатки одноранговых сетей: зависимость эффективности функционирования сети от количества АС, сложность управления сетью, сложность обеспечения защиты информации от несанкционированного доступа.

По скорости передачи данных в общем канале различают:

- ЛКС с малой пропускной способностью (единицы мегабит в секунду), в которых в качестве физической передающей среды используется обычно витая пара или коаксиальный кабель;

- ЛКС со средней пропускной способностью (десятки мегабит в секунду), в которых используется также коаксиальный кабель или витая пара;

- ЛКС с большой пропускной способностью (сотни мегабит в секунду), где применяются оптоволоконные кабели (световоды).

По топологии, т.е. конфигурации элементов в сети, ЛКС делятся на:

общую шину, кольцо, звезду и др.

14.5. Методы доступа к передающей среде в локальных сетях Типичными методами доступа к передающей среде в современных ЛКС являются:

• множественный доступ с контролем несущей и обнаружением конфликтов (CSMA/CD), иначе называемый методом доступа Ethernet, так как именно в этой сети получил наибольшее распространение;

• маркерное кольцо (метод доступа Token Ring);

• маркерная шина (метод доступа Arcnet).

Указанные методы доступа реализованы соответственно на стандартах IEEE802.3, IEEE802.5, IEEE802.4.

Метод доступа Ethernet (метод случайного доступа) — разработан фирмой Xerox в 1975 году и используется в ЛКС с шинной топологией, обеспечивает высокую скорость передачи данных и надежность. Это метод множественного доступа с прослушиванием несущей и разрешением конфликтов (коллизий). Каждая PC перед началом передачи определяет, свободен канал или занят. Если канал свободен, PC начинает передачу данных, осуществляемую пакетами, упакованными в кадры. Из-за различных системных задержек могут возникнуть коллизии. В этом случае станция задерживает передачу на определенное время. Для каждой PC устанавливается свое время ожидания перед повторной передачей кадра. Коллизии приводят к снижению быстродействия сети только при сравнительно большом количестве активных PC (до 80-100).

Метод доступа Token Ring — разработан фирмой IBM и рассчитан на кольцевую топологию сети. Это селективный метод доступа в кольцевой моноканал, именуемый “маркерное кольцо”. В качестве маркера используется уникальная последовательность битов.

Маркер не имеет адреса и может находиться в одном из двух состояний — свободном или занятом. Если ни одна РС не готова к передаче данных, свободный маркер циркулирует по кольцу. Станция, имеющая кадр для передачи, ждет подхода свободного маркера, захватывает его, изменяет состояние маркера на “занятый” и добавляет к нему кадр.

Занятый маркер с кадром перемещается по кольцу и возвращается к станции-отправителю, причем при прохождении через узел назначения снимается копия кадра. Станция-отправитель удаляет свой кадр из кольца, изменяет состояние маркера на “свободный” и передает его дальше по кольцу. С этого момента любая станция может изменить состояние маркера на “занятый” и начать передачу данных. Описанная процедура характерна для сети, в которой все станции имеют одинаковый приоритет. В рамках метода “маркерное кольцо” предусматривается возможность передачи кадров станции с учетом их приоритетов. Тогда станции с низким приоритетом могут захватывать кольцо в случае неактивности станций с более высоким приоритетом.

Метод доступа Arcnet — разработан фирмой Datapoint Corp и используется в ЛКС с топологией “звезда” и “общая шина”. Это селективный метод доступа в моноканал, называемый “маркерная шина”. Маркер создается одной из станций сети и имеет адресное поле, где указывается номер (адрес) станции, владеющий маркером. Передачу производит только та станция, которая в данный момент владеет маркером (эстафетной палочкой). Остальные станции работают на прием. Последовательность передачи маркера от одной станции к другой задается управляющей станцией сети. Станции, последовательно получающие маркер для передачи кадров, образуют “логическое кольцо”. Станция, получившая маркер (полномочия на передачу информации), передает свой подготовленный кадр в шину. Если кадра для передачи нет, она сразу посылает маркер другой станции согласно установленному порядку передачи полномочий. Так продолжается до тех пор, пока управляющая станция не инициирует новую последовательность передач маркера. Станция назначения, получившая маркер с кадром, “отцепляет” кадр от маркера и передает маркер той станции, которая является следующей в установленной последовательности передач. При таком методе доступа в моноканал имеется возможность обеспечить приоритетное обслуживание абонентов, например в течение одного цикла, когда маркер совершает полный оборот по “логическому кольцу”, станции с более высоким приоритетом получают маркер не один раз, а несколько.

В качестве примера приведем структуру пакета по стандарту IEEE 802.3 с указанием длины каждого поля в байтах.

Преам Признак Назна- Источ- Длин Данные Набив- CRC – була начала чение ник а ка сумма пакета 7 1 2 или 6 2 или 6 2 0 - 1500 ? Преамбула - это поле, содержащее семь одинаковых байтов 10101010, предназначенных для синхронизации.

Признак начала пакета - однобайтовое поле для обозначения начала пакета.

Назначение - поле длиной 2 или 6 байтов (в зависимости от типа ЛКС) указывает, для какой РС данный пакет предназначен.

Источник - в этом поле содержится адрес отправителя пакета.

Длина - здесь содержится информация о длине данных в пакете.

Данные - в это поле записываются данные, составляющие передаваемое сообщение.

Набивка - сюда вставляют пустые символы для доведения длины пакета до минимально допустимой величины. При достаточно большой длине поля данных поле набивки может отсутствовать.

CRC - сумма - здесь содержится контрольное число, используемое на приемном пункте для выявления ошибок в данных принятого пакета. В качестве контрольного числа применяется остаток избыточной циклической суммы, вычисленный с помощью полиномов типа CRC - 32. На приемном пункте также производится вычисление этого остатка и затем его сравнение с содержимым рассматриваемого поля с целью обнаружения ошибок в принятых данных.

Общая длина пакета стандарта IEEE 802.3 находится в диапазоне от 64 до 1518 байтов, не считая преамбулы и признака начала пакета.

14.6. Протоколы верхнего уровня До сих пор рассматривались протоколы передачи данных нижнего уровня, работающие на первых трех уровнях семиуровневой эталонной модели ВОС и реализующие соответствующие методы доступа к передающей среде. В соответствии с этими ППД передаются сообщения (пакеты) между рабочими станциями, но не решаются вопросы, связанные с сетевыми файловыми системами и переадресацией файлов.

Эти протоколы не включают никаких средств обеспечения правильной последовательности приема переданных данных и средств идентификации прикладных программ, нуждающихся в обмене данными.

В отличие от протоколов нижнего уровня, обеспечивающих доступ к передающей среде, протоколы верхнего уровня (называемые также протоколами среднего уровня, так как они реализуются на 4-м и 5-м уровнях модели ВОС) служат для обмена данными. Они предоставляют программам интерфейс для передачи данных методом дейтаграмм, когда пакеты адресуются и передаются без подтверждения получения, и методом сеансов связи, когда устанавливается логическая связь между взаимодействующими станциями (источником и адресатом) и доставка сообщений подтверждается.

Протоколы верхнего уровня подробно рассматриваются выше.

Здесь лишь коротко отметим протокол IPX/SPX, получивший широкое применение в локальных сетях особенно в связи с усложнением их топологии (вопросы маршрутизации перестали быть тривиальными) и расширением предоставляемых услуг. IPX/SPX – сетевой протокол NetWare, причем IPX (Internetwork Packet Exchange) – протокол межсетевого обмена пакетами, а SPX (Sequenced Packet Exchange) – протокол последовательного обмена пакетами.

Протокол IPX/SPX. Этот протокол является набором протоколов IPX и SPX. Фирма Nowell в сетевой операционной системе NetWare применяет протокол IPX для обмена дейтаграммами и протокол SPX для обмена в сеансах связи.

Протокол IPХ/SPX относится к программно-реализованным протоколам. Он не работает с аппаратными прерываниями, используя функции драйверов операционных систем. Пара протоколов IBХ/SPX имеет фиксированную длину заголовка, что приводит к полной совместимости разных реализаций этих протоколов.

Протокол IPX применяется маршрутизаторами в СОС NetWare. Он соответствует сетевому уровню модели ВОС и выполняет функции адресации, маршрутизации и переадресации в процессе передачи пакетов сообщений. Несмотря на отсутствие гарантий доставки сообщений (адресат не передает отправителю подтверждения о получении сообщения) в 95% случаев не требуется повторной передачи.

На уровне IPX выполняются служебные запросы к файловым серверам и каждый такой запрос требует ответа со стороны сервера. Этим и определяется надежность работы методом дейтаграмм, так как маршрутизаторы воспринимают реакцию сервера на запрос как ответ на правильно переданный пакет.

Протокол SPX работает на транспортном уровне модели ВОС, но имеет и функции, свойственные протоколам сеансового уровня. Он осуществляет управление процессами установки логической связи, обмена и окончания связи между любыми двумя узлами (рабочими станциями) ЛКС. После установления логической связи сообщения могут циркулировать в обоих направлениях с гарантией того, что пакеты передаются без ошибок. Протокол SPX гарантирует очередность приема пакетов согласно очередности отправления.

14.7. Сетевое оборудование локальных компьютерных сетей Рассмотрим подробнее оборудование, используемое в локальных сетях.

Сетевые адаптеры (СА). Указанные выше основные функции адаптеров и их технические характеристики определяются поддерживаемым уровнем протокола ЛКС в соответствии с архитектурой семиуровневой эталонной модели ВОС.

По выполняемым функциям СА разделяются на две группы:

• реализующие функции физического и канального уровней.

Такие адаптеры, выполняемые в виде интерфейсных плат, отличаются технической простотой и невысокой стоимостью. Они применяются в сетях с простой топологией, где практически отсутствует необходимость выполнения таких функций, как маршрутизация пакетов, формирование из поступающих пакетов сообщений, согласование протоколов различных сетей и др.;

• реализующие функции первых четырех уровней модели ВОС — физического, канального, сетевого и транспортного. Эти адаптеры, кроме функций СА первой группы, могут выполнять функции маршрутизации, ретрансляции данных, формирования пакетов из передаваемого сообщения (при передаче), сборки пакетов в сообщение (при приеме), согласования ПДД различных сетей, сокращая таким образом затраты вычислительных ресурсов ЭВМ на организацию сетевого обмена. Технически они могут быть выполнены на базе микропроцессоров. Естественно, что такие адаптеры применяются в ЛКС, где имеется необходимость в реализации перечисленных функций.

Адаптеры ориентированы на определенную архитектуру локальной сети и ее технические характеристики, поэтому по топологии ЛКС адаптеры разделяются на следующие группы: поддерживающие шинную топологию, кольцевую, звездообразную, древовидную, комбинированную (звездно-кольцевую, звездно-шинную).

Дифференциация адаптеров по выполняемым функциям и ориентация их на определенную архитектуру ЛКС привели к большому многообразию типов адаптеров и разбросу их характеристик.

Kонцентраторы (хабы). Эти устройства удобны для формирования сети произвольной топологии. Выпускается ряд типов концентраторов — пассивных и активных с автономным питанием, выполняющих роль повторителя. Они отличаются по количеству, типу и длине подключаемых кабелей и могут автоматически управлять подсоединенными сегментами (включать и выключать их в случае обнаружения сбоев и обрывов).

Приемопередатчики (трансиверы) и повторители (репитеры).

С помощью этих устройств можно объединить несколько сегментов сети с шинной топологией, увеличивая, таким образом, общую протяженность сети.

Приемопередатчик — это устройство, предназначенное для приема пакетов от контроллера рабочих станций сети и передачи их в шину. Он также разрешает коллизии в шине. Конструктивно приемопередатчик и контроллер могут объединяться на одной плате или находиться в различных узлах.

Повторитель — устройство с автономным питанием, обеспечивающее передачу данных между сегментами определенной длины.

Мосты и шлюзы. Мосты используются для соединения в основном идентичных сетей, имеющих некоторые физические различия на физическом и канальном уровнях. Например, с помощью моста могут соединяться на 3-м (сетевом) уровне две сети с различными более низкими уровнями, но одинаковыми более высокими уровнями.

Промышленностью выпускается довольно широкая номенклатура мостов. Среди них — “самообучающиеся” мосты, которые позволяют регулировать доступ к каждой из объединяемых сетей и трафик обмена между ними, а также используются для расширения сети, достигшей своего топологического предела. Некоторые из “самообучающихся мостов” применяются для объединения с помощью арендуемой линии связи локальной сети и удаленной сети в единую сеть, элементы которой могут быть рассредоточены на территории в сотни и тысячи километров.

Есть более сложные мосты, которые одновременно выполняют функции многоканального маршрутизатора. К ним относится мост HP 272 A ROUTER ER (он же — многоканальный маршрутизатор), который объединяет две локальные сети и две удаленные сети.

Шлюзы применяются для соединения различных сетей. Они выполняют протокольное преобразование для всех семи уровней модели ВОС, в частности — маршрутизацию пакетов, преобразование сообщения из одного формата в другой или из одной системы кодирования в другую. Следует иметь в виду, что по мере того как взаимная связь устанавливается на все более высоких уровнях модели ВОС, задача поддержания этой связи усложняется и для ее реализации требуется более мощный процессор.

Маршрутизаторы (роутеры). Эти устройства устанавливают соединение на 4-ом (транспортном) уровне, при этом верхние уровни сети (5,6 и 7) должны быть одинаковы. Они обеспечивают достаточно сложный уровень сервиса, так как могут выполнять “интеллектуальные” функции: выбор наилучшего маршрута для передачи сообщения, адресованного другой сети;

управление балансированной нагрузкой в сети путем равномерного распределения потоков данных;

защиту данных;

буферизацию передаваемых данных;

различные протокольные преобразования. Такие возможности маршрутизаторов особенно важны при построении базовых сетей крупных организаций.

Использование маршрутизаторов при объединении ряда небольших локальных сетей в единую сеть дает следующие преимущества (по сравнению с большой ЛКС, имеющей такое же количество абонентских систем):

•обеспечивается большая безопасность информации, циркулирующей в сети. В большой ЛКС, работающей в широковещательном режиме, информация распространяется по всей кабельной системе, поэтому лица, заинтересованные в расстройстве схемы адресации и приеме не адресованных им передач, имеют для этого все возможности. В сети, образованной из нескольких небольших ЛКС, защищенность информации выше: с помощью маршрутизаторов осуществляется межсетевая коммутация, а обычные сетевые потоки данных остаются локальными, т.е. работа в широковещательном режиме возможна только в пределах небольшой ЛКС;

•повышается надежность работы сети: выход из строя одной ЛКС не отражается на работе других взаимосвязанных сетей, так как маршрутизаторы, осуществляющие множественное взаимодействие, изолируют отказавшие сети;

•увеличивается производительность в пределах каждой индивидуальной сети, входящей в состав единой сети. В каждой небольшой ЛКС имеются свои средства управления сетью, повышающие степень ее самостоятельности. Кроме того, уменьшаются нагрузки, связанные с потоком данных, генерируемых рабочими станциями (в полном объеме по кабельной системе индивидуальной сети распространяются только те данные, которые поступают от “своих” рабочих станций);

•увеличивается диапазон действия сети: выполняя функции усилителей сигнала, маршрутизаторы устраняют ограничение по допустимой протяженности длины кабеля.

Коммутаторы. Появление коммутаторов в сетях диктовалось теми же потребностями, что и в случае мостов и маршрутизаторов, но, кроме того, необходимостью улучшения некоторых характеристик сетевого оборудования. Например, коммутаторы обладают большей пропускной способностью, что важно для интерактивного трафика между взаимодействующими рабочими станциями. В сети Ethernet коммутаторы обрабатывают полученный пакет в реальном масштабе времени, обеспечивая низкую латентность и высокую скорость коммутации.

В отличие от первых образцов современные коммутаторы обладают гибкой архитектурой и широкими функциональными возможностями. Они обеспечивают оперативную коммутацию пакетов с проверкой корректности данных, упрощают создание логических сетей с полным набором встроенных средств сетевого управления, в составе концентраторов с высокоскоростными переключаемыми магистралями позволяют достичь приемлемого варианта в организации сетевых соединений (например, формирования на магистрали выделенного сегмента, включающего двух конечных пользователей).

По своему назначению и функциональным возможностям современные мосты, маршрутизаторы и коммутаторы довольно близки друг к другу. Однако каждый из типов этих устройств разрабатывался не с целью вытеснения других устройств, он имеет свои области применения. Мосты обеспечивают сегментацию сети на физическом уровне, поэтому их “интеллектуальные” возможности ограничены.

Маршрутизаторы, интегрируя физические и логические сегменты сети в единое целое, решают при этом ряд “интеллектуальных” функций, но отличаются невысокой латентностью, что негативно отражается на оперативности управления трафиком. Коммутаторы идеально приспособлены для поддержки высокопроизводительной коллективной работы. В очень крупных сетях, насчитывающих тысячи узлов, мосты и маршрутизаторы обеспечивают более эффективное управление трафиком, чем коммутаторы. В сетях с небольшим числом пользователей целесообразно применять высокоскоростную коммутацию с малым временем задержки.

При формировании больших сетей масштаба предприятия наиболее удачным является комбинированный вариант использования мостов, маршрутизаторов и коммутаторов, умелое их сочетание, позволяющее создать действительно гибкую сетевую архитектуру.

Модемы и факс-модемы. Модем, обеспечивая согласование цифровых сигналов компьютера с аналоговыми сигналами телефонной линии, при передаче данных осуществляет модулирование аналоговых сигналов цифровой информацией, а при приеме - демодулирование.

Главное отличие между ними - по способу модуляции. Различают модемы с частотной, амплитудной и фазовой модуляцией.

При создании модемов придерживаются определенных стандартов передачи сигналов. Существуют стандарты по ряду признаков.

По скорости передачи данных - разработаны модемы стандартов V. 22 bis для скорости 2400 бит/с, V.32 для 9600 бит/с и V.32 bis для 14400 бит/с. В более скоростных модемах обычно реализованы и предшествующие стандарты передачи сигналов и, кроме того, предусмотрены запасные режимы с меньшими скоростями. Например, для стандарта V.32 bis это скорости 12000, 9600, 7200 и 4800 бит/с.

Второй стандарт связан с используемыми протоколами коррекции ошибок. Многие годы стандартом считались протоколы группы MNP (Microcom Networking Protocol) - MNP1-MNP10. Это аппаратные протоколы фирмы Microcom, обеспечивающие автоматическую коррекцию ошибок и компрессию (сжатие) передаваемых данных. В настоящее время используется стандарт МККТТ V.42. В целях совместимости модем стандарта V.42 включает в себя и функции MNP.

Третий стандарт определяет реализуемый метод сжатия данных.

Здесь также стандарт MNP5, предусматривающий сжатие информации всего лишь вдвое, уступает место стандарту Международного комитета по телеграфии и телефонии (МККТТ) V.42 bis, обеспечивающему сжатие информации в четыре раза. Стандарт V.42 bis в качестве резервного метода сжатия данных включает стандарт MNP5, а в качестве метода коррекции ошибок - стандарт V.42.

В состав типичного модема входят: специализированный микропроцессор для управления работой модема, оперативная память для хранения содержимого регистров модема и буферизации передаваемой (получаемой) информации, электрически перепрограммируемая постоянная память для хранения коммуникационных программ, динамик для звукового контроля связи, вспомогательные элементы (трансформатор, резисторы, разъемы и пр.).

В конструктивном исполнении модемы могут быть внутренними (встроенными) и внешними. Внутренний модем выполняется в виде отдельной платы, вставляемой в слот на материнской плате компьютера.

Внешний модем представлен в виде отдельного устройства с блоком питания, подключаемого к последовательному асинхронному порту компьютера. К телефонной линии связи модем подключается либо непосредственно, либо при помощи микрофона и динамика к обычной телефонной трубке (акустические модемы). Модемы, подключаемые к разным концам одной и той же линии связи, должны быть одинакового стандарта.

Факс-модемы обеспечивают скоростную передачу данных только в одном направлении и используют свои собственные стандарты. Они лучше справляются с передачей информации, чем с приемом. В настоящее время выпускаются и комбинированные модемы (модем данных/факс-модем).

Анализаторы ЛКС. Это мощный диагностический инструмент, предназначенный для контроля качества функционирования сети.

Контроль позволяет наблюдать за работой сети в режиме реального времени и регистрировать события, которые могут означать возникновение проблемы. Контроль сопровождается графическим или цифровым отображением информации. Анализаторы могут накапливать и хранить информацию о состоянии сети с целью последующего его воспроизведения и анализа.

Сетевые тестеры. Это приборы, входящие в состав контрольно измерительной аппаратуры, которая облегчает установку и техническое обслуживание локальных сетей. Тестеры линий передачи являются хорошим средством проверки нового кабеля и отыскания неисправностей в системе установленных кабелей. Они способны не только обнаруживать неисправность, но и сообщать сведения о ее характере и месте расположения.

15. Глобальные компьютерные сети: принципы организации 15.1. Общие сведения Территориальные компьютерные сети (глобальные, региональные, корпоративные), появление которых обусловлено достижениями научно-технического прогресса и объясняется потребностью в обмене информацией, стали неотъемлемой частью осуществления программ сотрудничества между странами. В настоящее время функционирует множество компьютерных сетей, используемых в научных и образовательных целях, в бизнесе, финансово-экономической деятельности, реализации совместных научно-технических программ и многих других применений. Следует, прежде всего, выделить глобальную сеть Internet, объединяющую множество других сетей и позволяющую войти в мировое сообщество. Internet предоставляет пользователям практически неограниченные информационные ресурсы.

На характере развития сетевых структур в любой развитой стране в большой степени отражаются общие мировые тенденции развития КС.

Одна из них - тенденция объединения в той или иной форме различных сетевых структур, обусловленная необходимостью предоставления пользователям возможности связи с компьютером, находящимся в любой точке планеты (в современном мире это важное условие конкурентной способности предприятия, оказывающего телекоммуникационные услуги).

Процессу объединения сетей способствует развитие их архитектуры в направлении создания национальных и международных ассоциаций систем компьютерной связи, в которых используются ЭВМ, изготовленные различными производителями и управляемые различными ОС. Это стало возможно, так как в основу моделей и архитектуры сетей положены международные стандарты. В результате во всех развитых странах в настоящее время выпускаются в основном разнообразные технические и программные средства территориальных и локальных сетей нового типа - открытых сетей, удовлетворяющих требованиям международных стандартов.

Возможности и конкурентоспособность любой КС определяется, прежде всего, ее информационными ресурсами - знаниями, данными, программами, которые сеть предоставляет пользователям. Естественно, что эти ресурсы должны как можно шире охватывать те области, в которых работают пользователи сети. Кроме того, они должны непрерывно обновляться и пополняться.

По мере развития сетей расширяется перечень предоставляемых ими услуг и повышается их интеллектуальный уровень.

В отличие от локальных сетей, в составе которых имеются свои высокоскоростные каналы передачи информации, глобальная (а также региональная и, как правило, корпоративная) сеть включает подсеть связи (иначе: территориальную сеть связи, систему передачи информации), к которой подключаются локальные сети, отдельные компоненты и терминалы (средства ввода и отображения информации).

Подсеть связи состоит из каналов передачи информации и коммуникационных узлов, которые предназначены для передачи данных по сети, выбора оптимального маршрута передачи информации, коммутации пакетов и реализации ряда других функций с помощью компьютера (одного или нескольких) и соответствующего программного обеспечения, имеющихся в коммуникационном узле. Компьютеры, за которыми работают пользователи-клиенты, называются рабочими станциями, а компьютеры, являющиеся источниками ресурсов сети, предоставляемых пользователям, называются серверами. Такая структура сети получила название узловой.

Всемирная глобальная сеть Internet до 1995г., когда она контролировалась National Science Foundation (NSF), имела строго иерархическую трехуровневую структуру. На верхнем (первом) уровне находилась базовая высокоскоростная магистраль, к которой подключались сети второго уровня – региональные поставщики услуг доступа в Internet. К сетям регионального уровня подключались сети третьего, локального уровня (сети предприятий, учебных заведений, научных учреждений и др.).

По мере развития Internet и, особенно с появлением гипертекстовой системы WWW (World Wide Web), она значительно увеличилась, превратилась в коммерческую сеть и связи перестали представлять трехуровневую иерархическую структуру. Теперь Internet имеет типичную для глобальных сетей узловую структуру, она представляет собой совокупность взаимосвязанных коммуникационных центров, к которым подключаются региональные поставщики сетевых услуг и через которые осуществляется их взаимодействие.

Следовательно, с точки зрения пользователя в сети Internet выделяются поставщики услуг, поддерживающие необходимую информацию на серверах, и потребители этих услуг - клиенты. Взаимодействие поставщиков с клиентами осуществляется через коммуникационную систему.

Организация обмена данными в территориальных сетях, в том числе и в сети Internet, осуществляется двумя различными способами:

без установления логического соединения между передающим и принимающим узлами сети и с установлением логического соединения (с установлением сеанса связи).

Способ связи без установления логического соединения характеризуется следующим:

• он используется в сетях с коммутацией пакетов, причем каждый пакет рассматривается как индивидуальный объект, независимая единица передачи информации;

• пакеты от отправителя можно передавать в произвольные моменты, а также одновременно множеству адресатов по различным маршрутам;

• перед передачей данных сквозная связь между отправителем и получателем заранее не устанавливается, не требуется также синхронизации аппаратуры связи на передающем и приёмном пунктах;

• из-за занятости отдельных участков маршрута может осуществляться буферизация пакетов в промежуточных узлах связи;

• передача сигнала к отправителю от адресата, подтверждающего получение информации, не производится.

Это один из первых и простейших способов обмена данными в коммуникационной технологии. Он широко используется в дейтаграммных сетях, в которых реализуются дейтаграммные протоколы информационного обмена.

Способ связи (или режим связи), ориентированный на логическое соединение, относится к более поздней технологии. Он обеспечивает более высокий уровень сервиса по сравнению с дейтаграммной связью.

Особенности организации обмена данными с установлением логического соединения:

• перед передачей информации между взаимодействующими абонентами (отправителем и получателем) устанавливается логический (виртуальный) канал, причём технология создания (установления) канала такова: отправитель посылает запрос на соединение удалённому адресату через ряд промежуточных узлов связи;

адресат, получив этот запрос, в случае “согласия” на установление логического канала посылает отправителю сигнал подтверждения;

после получения сигнала подтверждения отправителем начинается обмен данными с управлением потоком, сегментацией и исправлением ошибок;

• после завершения обмена данными адресат посылает пакет подтверждения этого события отправителю (клиенту — инициатору установления логического канала), который воспринимается как сигнал для разъединения канала. Следовательно, при использовании этого способа связи выделяются три этапа: установление канала, обмен данными, разъединение канала.

Связь с установлением логического канала применяется в виртуальных сетях, где используются протоколы информационного обмена типа виртуального соединения. Такая связь может быть многоканальной, и тогда каждая пара взаимодействующих абонентов, обмениваясь данными по своему виртуальному каналу, воспринимает его как выделенный канал, в распоряжение которого предоставлены все ресурсы связи. В действительности эти ресурсы распределяются между всеми одновременно работающими виртуальными каналами данной линии связи.

При передаче по виртуальному каналу длинных сообщений они разбиваются на одинаковые части (пакеты), которые отправляются в канал в порядке их размещения в сообщении. Это избавляет от необходимости снабжать каждый пакет служебной информацией в полном объёме, с тем чтобы превратить его в независимую единицу передачи информации, как это имеет место в дейтаграммных сетях.

Кроме того, передача пакетов в их естественной последовательности, определяемой порядком размещения в сообщении, существенно облегчает задачу формирования первоначального сообщения из принимаемых пакетов на приёмном пункте.

Первый из рассмотренных способов организации обмена данными в сетях отличается простотой в реализации и сравнительно небольшими накладными расходами. При малой загруженности линий связи сети он позволяет существенно сократить время на передачу длинного сообщения. Кроме того, он удобен при рассылке информации по многим адресам. В загруженных сетях реализация такого способа может привести к значительным задержкам пакетов в промежуточных узлах связи и даже к потере отдельных пакетов, что негативно отражается на надёжности доставки информации адресатам. Второй способ, напротив, характеризуется высокими накладными расходами, однако он предоставляет абонентам существенно большие удобства, обеспечивает требуемую оперативность в обмене данными (в идеальном случае переполнение соединений в промежуточных узлах связи полностью исключается) и гарантированную надежность доставки информации абонентам.

Таким образом, каждый из режимов связи имеет свои особенности, а значит и области применения.

Режим “с соединением” целесообразно использовать для тех применений, где взаимодействие имеет долговременный характер, конфигурация взаимодействующих объектов постоянна, а поток данных не имеет больших пауз.

Режим “без соединения” больше подходит там, где взаимодействие имеет кратковременный характер, при котором объём передаваемых данных невелик, а интервалы между передачами значительны (относительно скорости передачи). Кроме того, его целесообразно использовать в системах с повышенными требованиями к надёжности доставки данных адресату, так как эти требования можно удовлетворить путём тиражирования данных и передачи адресату по разным маршрутам.

15.2. Управление обменом данных В основу архитектуры сетей положен многоуровневый принцип передачи сообщений. Формирование сообщения осуществляется на самом верхнем уровне модели ВОС. Затем (при передаче) оно последовательно проходит все уровни системы до самого нижнего, где и передается по каналу связи адресату. По мере прохождения каждого из уровней системы сообщение трансформируется, разбивается на сравнительно короткие части, которые снабжаются дополнительными заголовками, обеспечивающими информацией аналогичные уровни на узле адресата. В этом узле сообщение проходит от нижнего уровня к верхнему, снимая с себя заголовки. В результате адресат принимает сообщение в первоначальном виде.

В территориальных сетях управление обменом данных осуществляется протоколами верхнего уровня модели ВОС. Независимо от внутренней конструкции каждого конкретного протокола верхнего уровня, для них характерно наличие общих функций: инициализация связи, передача и прием данных, завершение обмена. Каждый протокол имеет средства для идентификации любой рабочей станции сети по имени, сетевому адресу или по обоим этим атрибутам. Активизация обмена информации между взаимодействующими узлами начинается после идентификации узла адресата узлом, инициирующим обмен данными. Инициирующая станция устанавливает один из методов организации обмена данными: метод дейтаграмм или метод сеансов связи. Протокол предоставляет средства для приема/передачи сообщений адресатом и источником. При этом обычно накладываются ограничения на длину сообщений.

Наиболее распространенным протоколом управления обменом данных является протокол ТСР/IP. Главное отличие сети Internet от других сетей заключается именно в ее протоколах ТСР/IP, охватывающих целое семейство протоколов взаимодействия между компьютерами сети. ТСР/IP – это технология межсетевого взаимодействия, технология Internet. Сеть, реализующая эту технологию, называется «internet». Если же речь идет о глобальной сети, объединяющей множество сетей с технологией «internet», то ее называют Internet.

Протокол ТСР/IP – это семейство программно реализованных протоколов старшего уровня, не работающих с аппаратными прерываниями. Технически протокол ТСР/IP состоит из двух частей – IP и ТСР.

Протокол IP (Internet Protocol – межсетевой протокол) является главным протоколом семейства, он реализует распространение информации в IP-сети и выполняется на третьем (сетевом) уровне модели ВОС. Протокол IP обеспечивает дейтаграммную доставку пакетов, его основная задача – маршрутизация пакетов. Он не отвечает за надежность доставки информации, за ее целостность, за сохранение порядка потока пакетов. Сети, в которых используется протокол IP, называются IP-сетями. Они работают в основном по аналоговым каналам (т.е. для подключения компьютера к сети требуется IP-модем) и являются сетями с коммутацией пакетов. Пакет здесь называется дейтаграммой.

Высокоуровневый протокол ТСР (Transmission Control Protocol – протокол управления передачей) работает на транспортном уровне и частично на сеансовом уровне. Это протокол с установлением логического соединения между отправителем и получателем. Он обеспечивает сеансовую связь между двумя узлами с гарантированной доставкой информации, осуществляет контроль целостности передаваемой информации, сохраняет порядок потока пакетов.

Для компьютеров протокол ТСР/IP – это как правила разговора для людей. Он принят в качестве официального стандарта в сети Internet, т.е. сетевая технология ТСР/IP де-факто стала технологией всемирной сети.

Протокол ТСР/ IP основывается на концепции одноранговых сетей. Все рабочие станции, соединенные при помощи этого протокола, имеют одинаковый статус. Однако любая из них, располагая соответствующими средствами, может временно выполнять дополнительные функции, связанные, например, с управлением ресурсами сети. Ключевую часть протокола составляет схема маршрутизации пакетов, основанная на уникальных адресах сети Internet. Каждая рабочая станция, входящая в состав локальной или глобальной сети, имеет уникальный адрес, который включает две части, определяющие адрес сети и адрес станции внутри сети. Такая схема позволяет передавать сообщения как внутри данной сети, так и во внешние сети. Часть протокола ТСР/ IP, отвечающая за распознавание адреса, называется IRP (протокол распознавания адреса).

15.3. Системы сетевых коммуникаций 15.3.1. Электронная почта К числу наиболее популярных и распространенных систем сетевых коммуникаций относится электронная почта (ЭП). В настоящее время предлагается множество различных пакетов программ для организации системы ЭП, в том числе в локальных сетях. Если локальная сеть через шлюз связана с сетью более высокого уровня (региональной, корпоративной, глобальной), что практикуется повсеместно, то можно пользоваться услугами ЭП в более широком масштабе. Организация электронной почты в различных сетях имеет много общего (см., например, структуру и функционирование ЭП в сетях Internet, РЕЛКОМ и др.).

В качестве примера рассмотрим специальный пакет программ Mircosoft Mail, представляющий собой универсальную систему корпоративной электронной почты, обеспечивающую: создание почтового отделения (ПчО) для управления почтовыми услугами;

регистрацию и подключение пользователей к ПчО;

формирование сообщений пользователями, их пересылку и обслуживание (хранение, сортировку, поиск, создание шаблонов документов, просмотр, редактирование, сопровождение комментариями и т.п.);

конфиденциальность использования информации и т.д.

В локальной сети формируется рабочая группа пользователей сети, имеющая возможность выхода в глобальные сети. Все пользователи в зависимости от выполняемых ими функций в сети разделяются на обычных пользователей (Users) и распорядителей сети (Manager). Соответственно им различают и их компьютеры: обычные и “почтовое отделение”. Создание ПчО предполагает организацию на одном из компьютеров ЛКС (обычно на сервере) определенной структуры каталогов и размещения в них программных компонентов системы ЭП. При этом: компьютер “почтовое отделение” должен быть постоянно включен и готов работать, так как через него проходят все пересылки информации;

на жестком диске этого компьютера должно быть не менее 2 Мбит свободного пространства, из которых 360 Кбит отводится под каталог “Почты” и по 16 Кбит на каждого пользователя рабочей группы для организации личных каталогов.

Процессы передачи сообщений между пользователями в системе ЭП Microsoft Mail во многом сходны с пересылкой обычной почтовой корреспонденции. Каждый пользователь созданной рабочей группы ЛКС получает имя и пароль и регистрируется в ПчО этой группы.

Пользователь, подготовив свое сообщение и сделав запрос в ПчО на его пересылку, помещает это сообщение в буфер-папку отправлений на своем компьютере. Специальная программа - спулер периодически опрашивает буферы входных и выходных сообщений. Как только в буфере отправлений появляется сообщение, оно перемещается в ПчО, где регистрируется и ставится в очередь на дальнейшую пересылку адресату (адресатам). С помощью Диспетчера почты сообщение доставляется пользователям и разносится по соответствующим каталогам. Предусматривается информирование пользователей о процессах передачи сообщений путем изменения внешнего вида значка почтового ящика на экране дисплея: наличие корреспонденции в буфере отображается значком открытого почтового ящика, значок закрытого ящика свидетельствует о переправке сообщения в ПчО, исчезновение значка - о получении сообщения адресатом. При получении сообщения адресат оповещается звуковым сигналом и видеоизображением почтового ящика с выглядывающим из него конвертом.

Создание почтового отделения в рабочей группе пользователей сети осуществляется путем запуска программы Mail (почта) и выполнения ряда предусмотренных для этого операций, включая операции по установке параметров ЭП для режима отправления сообщений и режима получения сообщений.

Доступ пользователей в ПчО обеспечивается через Диспетчер файлов, при обращении к которому указывается имя каталога ПчО.

Список пользователей формируется по специальной команде, причем этот список может изменяться и пополняться. Личные карточки пользователей заполняются или самими пользователями, или Управляющим ПчО. Пользователи могут вводить свои пароли самостоятельно, что обеспечивает необходимую конфиденциальность.

Для доступа в ПчО пользователю необходимо знать имя своего почтового ящика и пароль входа.

Операции создания и рассылки сообщения выполняются после запуска программы Mail. Для ускорения подготовки сообщений в этой программе предусмотрены средства хранения исходящих документов и возможность последующего копирования их частей в новое сообщение.

Возможно создание шаблона сообщения, что имеет большое значение при разработке документов стандартной формы. Создание шаблона практически не отличается от формирования обычного документа за исключением того, что в шаблоне фиксируются неизменные, стандартные части. Использование шаблона как стандартного бланка сообщения требует его вызова и заполнения. В качестве дополнительных функций программа Mail позволяет вставлять в текст сообщения вполне готовые документы.

Прием - передача сообщений производятся в среде Mail автоматически. Программа СПУЛЕР опрашивает исходящий и входящий буферы с заранее установленной периодичностью, причем динамику процессов можно наблюдать по изменению вида значков - этикеток сообщений на экране дисплея. Для формирования ответа - уведомления необходимо, чтобы полученное сообщение было открытым или выделено в папке “Входящие”. При желании такой ответ можно разослать циркулярно.

В глобальных сетях наиболее известными и распространенными являются две системы электронной почты - в сетях Х.400 и Internet.

Электронная почта стандарта X.400. Система электронной почты X400 рекомендована международными стандартизирующими организациями. Еще в 1984 MKKTT опубликовал серию из восьми рекомендаций, определяющих принципы построения и протоколы обмена для систем обработки сообщений общего пользования, ставших известными под общим названием X.400. Имеет место тенденция государственных органов во всем мире при построении подведомственных им сетевых образований ориентироваться на применение X.400. Однако следует иметь в виду, что X.400 - не сеть, а стандарт для организации службы ЭП. Следовательно, абоненты, имея доступ и адреса в системе X.400, должны обмениваться письмами через сети, услугами которых они пользуются.

В отличие от системы адресации в сети Internet, которая является позиционной, адресация в X.400, предложенная в рекомендации X.408, относится к категории ключевых, состоящих из описания атрибутов адреса, как это имеет место в обычной почте. Преимуществом ключевой записи адреса является возможность не соблюдать строгую последовательность его элементов и, кроме того, указывать неполный адрес, если обеспечивается его уникальность. В стандарт X.400 введены элементы, обеспечивающие адресацию к другим, не X.400 системам.

Это соответствует распространенной практике заключения между различными системами электронной почты частных соглашений о правилах взаимных адресаций.

В системе X.400, как и в большинстве других систем ЭП, предоставляются услуги по доставке твердой копии электронного письма тем пользователям, которые не имеют доступа к компьютеру.

Электронная почта стандарта Internet. В значительной части мировых КС используется система электронной почты стандарта Internet. В России действует система электронной почты РЕЛКОМ, которая на правах национальной сети имеет доступ в европейскую сеть EVNET, представляющую собой составную часть сетевого конгломерата, называемого Internet.

Электронное письмо (текстовый файл, снабженный стандартным заголовком) составляется пользователем по определенным правилам.

Оно состоит из заголовка и собственно текста письма. Заголовок включает реквизиты, называемые полями. Каждое поле состоит из имени и значения поля. Заголовок обычно содержит адреса отправителя и получателя, дату создания письма и его тему, если в этом есть необходимость.

15.3.2. Системы адресации Для внешних средств коммуникации нашли применение два стиля, или две системы адресации:

• явная адресация, исторически присущая UNIX системам и потому иногда называемая стилем UUCP (Unix-to Unix Communication Protocol);

• доменная адресация DNS (Domain Name System), называемая также стилем Internet.

При явной адресации маршрут к адресату задается перечислением имен компьютеров, через которые последовательно передается электронное письмо или любое другое сообщение.

Последним именем в этой последовательности является имя адресата на последнем указанном компьютере. При модемной связи в качестве имени компьютеров указывается телефонный номер, т.е. адрес абонента выглядит так: имя узлового компьютера - имя компьютера абонента - сетевое имя абонента. Отправитель электронного письма сам не составляет его маршрут. Он только указывает сетевой адрес получателя, а маршрут или начальный маршрут определяет из своих таблиц маршрутизации почтовый сервер, на который отправитель посылает свое письмо. Просматривая маршрут перемещения письма от отправителя к получателю (если возможны альтернативные маршруты, то они также предусматриваются системой адресации), можно получить весьма полезную информацию о межсетевых связях.

К числу недостатков явной адресации относятся: возможность транспортировки писем по весьма протяженным маршрутам, вероятность отказа одного (или нескольких) из компьютеров в цепочке машин указанного маршрута. В результате могут возникать продолжительные задержки в доставке писем.

В доменной системе адресации Internet каждый корреспондент получает сетевой адрес, включающий две составляющие:

идентификатор пользователя (userid) и идентификатор узла (nodeid).

Идентификатор userid является уникальным для узла сети.

Идентификатор noteid представляет собой текстовую строку, состоящую из доменов, разделяемых точками. Адрес читается справа налево и состоит из зарегистрированных доменов в сети.

В системе DNS ключевым является понятие “полностью определенное имя домена” - это имя домена, которое включает все домены более высокого уровня и образует таким образом полное, целое имя. Структуру DNS можно представить в виде дерева, каждый узел которого имеет свое название (метку). Для каждого конкретного узла “полностью определенное имя домена” будет состоять из его имени и имени всех узлов, связывающих его с корнем дерева, причем корневой домен всегда нулевой.

Изначально в сети Internet в рамках системы DNS была введена система адресации по административному, а не по территориальному принципу. При этом самый верхний домен (домен верхнего уровня) мог принимать одно из восьми значений, определяющих вид сети или характер организации (коммерческие организации США, правительственные учреждения США, международные организации, военные организации США, некоммерческие организации США). Все поддомены, расположенные в адресе левее домена верхнего уровня, последовательно уточняют положение адресата внутри этого домена.

Например, домен верхнего уровня в адресе означает, что адресат находится в одном из правительственных учреждений США, следующий слева домен уточняет, в каком именно учреждении, следующий - указывает подразделение этого учреждения и, наконец, самый левый домен в адресе указывает на конкретный компьютер в этом подразделении.

После включения в сеть Internet сетей Европы начал использоваться территориальный принцип адресации, в соответствии с которым в качестве домена верхнего уровня употребляется код страны адресата, затем следует (если адрес читать справа налево) код региона и, наконец, код компьютера адресата. В дальнейшем принцип адресации в Internet получился смешанный: домен верхнего уровня принимает уникальное значение общеизвестной организации или сети, а затем идут коды, характерные для территориального принципа адресации. Это, однако, не затрудняет почтовые службы: если в правой части адреса записан домен типа gov, что означает “правительственное учреждение США”, то адресат находится в США, поэтому код страны не нужен. Как правило, во все места, которые адресуются по типу организации, можно добраться и используя код страны.

В сетях, не являющихся IP-сетями, но использующих для регистрации имен компьютеров систему DNS, часто применяются адреса, в которых домен верхнего уровня указывает название сети адресата. Это позволяет доставить электронную почту из сетей не Internet, не имеющих IP-адреса.

Система DNS в сети Internet рассматривается как механизм, используемый для получения по имени компьютера его IP-номера. Это также метод иерархической организации пространства адресов сети Internet.

Большим преимуществом системы DNS является то, что она исключает зависимость имен узлов и их сетевых адресов от центрально установленного файла связи. В IP-сетях каждый компьютер или локальная сеть компьютеров имеет 4-байтный IP-номер, и машины, осуществляющие транспортировку почты, снабжаются таблицами соответствия мнемонических адресов и IP-адресов. Распределением IP номеров занимается специальная служба сети Internet, а их регистрация возложена на региональные администрации сетей. В странах СНГ вопросами регистрации и выделения IP-номеров занимается специальная служба в сети РЕЛКОМ.

Скорость доставки электронных писем сильно зависит от используемого механизма передачи. В Internet существуют два механизма передачи. Первый основан на протоколе UUCP и реализует пакетный режим передачи off-line, характерный для дейтаграммных сетей. Письмо передается по сети от узла к узлу программами Sendmail, и возможны задержки в каждом узле. Это дополнительный способ передачи. Основной (второй) механизм передачи базируется на протоколе SMTP семейства протоколов TCP/IP в сети коммутации пакетов. Он реализует передачу почты в режиме on-line: на время передачи между отправителем и получателем создается виртуальный канал, и письмо пересылается в течение нескольких секунд, при этом вероятность потери или подмены письма минимальна.

Обычный алгоритм работы почтовой программы таков: сначала осуществляется попытка отправить письмо немедленно (по протоколу SMTP);

если это не получилось из-за неудачи в получении связи с узлом назначения, письмо попадает в очередь (в соответствии с протоколом UUCP), и время его задержки будет определяться загруженностью сети.

Оптимальное время доставки по протоколу UUCP от начального пункта в конечный составляет 5-10 минут.

Система адресации Internet, называемая также стандартом RFS- (по названию документа, в котором она описана), принята во многих других сетях. Стандарт RFS-822 определяет уровень поддержки обмена электронной почтой между локальными сетями, связанными линиями передачи по протоколу TCP/IP (аналогичный ему стандарт X определяет этот обмен по протоколу X.25). Имеются соглашения о преобразовании адресов на межсетевых шлюзах, если осуществляется обмен сообщениями между сетью Internet и сетями, не поддерживающими стандарт RFS-822.

Для ЭП характерны те же достоинства (простота, дешевизна, возможность подписи и зашифровки письма, возможность пересылки нетекстовой информации) и недостатки (негарантированное время пересылки, возможность несанкционированного доступа со стороны третьих лиц, не интерактивность), что и для обычной почты. Но существенными преимуществами ЭП являются: слабая зависимость стоимости пересылки письма от расстояния, гораздо меньшее время доставки электронных писем, более высокая надежность шифрования писем.

15.3.3. Системы телеконференций В системе телеконференций (ТК) принцип электронной почты получил дальнейшее развитие. Если в системе ЭП сообщения адресуются “один к одному” и каждому пользователю предоставляется индивидуальный “почтовый ящик”, то в системе ТК адресация осуществляется по принципу “один ко всем” и на всех участников ТК выделяется один ящик.

В развитии мировых сетей ТК важнейшую роль играет метасеть телеконференций USENET, неразрывно связанная с сетью Internet.

Датой образования USENET считается 1979 год, сразу после выхода версии V7 Unix со средствами UUCT.

Уже в 1984 г. возрастающий объём информации новостей привёл к необходимости деления этих новостей на группы по темам. Затем в очередной версии программы обработки новостей был добавлен механизм координирования (модерирования) групп, а в 1986 г. была выпущена версия 2.11 для поддержки новой структуры именования групп, пакетной обработки, компрессии и других особенностей.

Pages:     | 1 || 3 | 4 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.